Literatura académica sobre el tema "Modèle de Navier-Stokes-Cahn-Hilliard"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Modèle de Navier-Stokes-Cahn-Hilliard".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Modèle de Navier-Stokes-Cahn-Hilliard"
Sabooniha, Ehsan, Mohammad-Reza Rokhforouz y Shahab Ayatollahi. "Pore-scale investigation of selective plugging mechanism in immiscible two-phase flow using phase-field method". Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 78. http://dx.doi.org/10.2516/ogst/2019050.
Texto completoTesis sobre el tema "Modèle de Navier-Stokes-Cahn-Hilliard"
Pi, Haohong. "Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.
Texto completoThe core-flood experiments are the usual method used to study the immiscible biphasic flow. However, beside reproducibility aspects, a significant drawback is that with these black box experiments, we cannot observe and capture key phenomena at the pore scale, including interfacial interactions and details about mobilization of the trapped oil (e.g. size and distribution of residual ganglia). This is why microfluidic micromodel devices are now extensively used in lab EOR experiments. They preserve the structural details of the rock while offering advantages such as easy cleaning and repeatability. Visual tracking of fluids displacement is particularly important as it can provide more details about the behavior of wetting and non-wetting phases in porous media, aiding in targeted strategies to enhance oil recovery rates. This thesis explores the intricate dynamics of immiscible two-phase flows combines microfluidic porous medium models, often referred to as “reservoir-on-a-chip”, with numerical simulations.In our experiments, we used morphological to monitor and record displacement behavior in biphasic flow, systematically studying the effects of different capillary numbers (Ca) and viscosity ratios (M) on the flow mechanisms and the mobilization of residual oil. The results indicated that during waterflooding, displacement exhibited characteristics of viscous fingering at lower Ca and M values. By increasing the flow rate to enhance Ca tenfold, the residual oil showing lateral and even backward invasion of flow paths without significant changes in cluster size. With increasing M, both the cluster size and the maximum cluster size decreased, leading to a more uniform distribution of residual oil and lower Sor. The mobilization mechanism of residual oil manifested as ganglia breakup, with newly formed smaller ganglia being mobilized under higher pressures. The distribution of residual oil clusters is consistent with percolation theory, where the scaling exponent τ is 2.0. All experimental results for Sor and corresponding Ca values collapsed onto the classical Capillary Desaturation Curve (CDC).The experimental findings served as a foundation for developing a numerical model using a phase-field approach. This model, based on the Cahn-Hilliard-Navier-Stokes system of equations, effectively captures the bi-phasic flow behavior of immiscible fluids within confined domains. It incorporates conservation of mass and momentum equations, enhanced by phase separation dynamics and interfacial energy considerations. The numerical simulations, executed on the open-source finite element platform Fenics, align qualitatively and quantitatively with experimental observations, affirming the accuracy of model in predicting fluid behaviors under varied physical conditions, advancing our understanding of pore-scale fluid dynamics. Simulations focus on dissecting the influence of fluid properties and operational conditions on the displacement mechanisms at the pore scale
Lapuerta, Céline. "Echanges de masse et de chaleur entre deux phases liquides stratifiées dans un écoulement à bulles". Phd thesis, Université de Provence - Aix-Marseille I, 2006. http://tel.archives-ouvertes.fr/tel-00132564.
Texto completoLa modélisation d'un système ternaire en écoulement anisotherme est ensuite poursuivie par couplage des équations de Cahn-Hilliard avec celles du bilan d'énergie et de Navier-Stokes où les contraintes surfaciques sont prises en compte à travers des forces volumiques capillaires. L'ensemble est discrétisé en temps et en espace de façon à préserver les propriétés du problème continu (conservation du volume, estimation d'énergie). Différents résultats numériques sont présentés, depuis le cas de validation de l'étalement d'une lentille entre deux phases jusqu'à l'étude des transferts de masse et de chaleur à travers une interface liquide/liquide traversée par une bulle ou un train de bulles.
Minjeaud, Sebastian. "Raffinement local adaptatif et méthodes multiniveaux pour la simulation d'écoulements multipĥasiques". Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2010. http://tel.archives-ouvertes.fr/tel-00535892.
Texto completoŘehoř, Martin. "Modely s neostrým rozhraním v teorii směsí". Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-389829.
Texto completoActas de conferencias sobre el tema "Modèle de Navier-Stokes-Cahn-Hilliard"
Chen, H., Y. Shu, B. Q. Li, P. Mohanty y S. Sengupta. "Phase-Field Modeling of Droplet Movement Using the Discontinuous Finite Element Method". En ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43368.
Texto completoPark, Keunsoo, Carlos A. Dorao, Ezequiel M. Chiapero y Maria Fernandino. "The Least Squares Spectral Element Method for the Navier-Stokes and Cahn-Hilliard Equations". En ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-21668.
Texto completoPark, Keunsoo, Carlos A. Dorao y Maria Fernandino. "Numerical Solution of Coupled Cahn-Hilliard and Navier-Stokes System Using the Least-Squares Spectral Element Method". En ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1008.
Texto completoTakada, Naoki. "Application of Interface-Tracking Method Based on Phase-Field Model to Numerical Analysis of Isothermal and Thermal Two-Phase Flows". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37567.
Texto completoDo-Quang, Minh, Go¨ran Stemme, Wouter van der Wijngaart y Gustav Amberg. "Numerical Simulation of the Passage of Small Liquid Droplets Through a Thin Liquid Film". En ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62319.
Texto completoTakada, Naoki y Akio Tomiyama. "Interface-Tracking Simulation of Two-Phase Flows by Phase-Field Method". En ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98536.
Texto completoTakada, Naoki, Masaki Misawa y Akio Tomiyama. "A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows". En ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77367.
Texto completoWang, Zhicheng, Xiaoning Zheng y George Karniadakis. "A Phase Field Method for Numerical Simulation of Boiling Heat Transfer". En ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20176.
Texto completo