Índice
Literatura académica sobre el tema "Modèle bayésien non paramétrique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Modèle bayésien non paramétrique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Modèle bayésien non paramétrique"
Lubrano, Michel. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques". Articles 80, n.º 2-3 (24 de octubre de 2005): 465–99. http://dx.doi.org/10.7202/011396ar.
Texto completoAngers, Jean-François, Denise Desjardins y Georges Dionne. "Modèle Bayésien de tarification de l’assurance des flottes de véhicules". Articles 80, n.º 2-3 (24 de octubre de 2005): 253–303. http://dx.doi.org/10.7202/011388ar.
Texto completoHilgert, Nadine y Bruno Portier. "Estimation non paramétrique dans un modèle autorégressif fonctionnel non directement observé". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 327, n.º 6 (septiembre de 1998): 597–600. http://dx.doi.org/10.1016/s0764-4442(98)89171-4.
Texto completoChebli, Hamid y Christian Soize. "Analyse vibratoire par sous-structuration avec modèle non paramétrique d'incertitudes aléatoires non homogènes". Revue Européenne des Éléments Finis 11, n.º 2-4 (enero de 2002): 233–46. http://dx.doi.org/10.3166/reef.11.233-246.
Texto completoBroniatowski, Michel y Gérard Kebabdjian. "Inflation et dynamique des prix — Un traitement non paramétrique des données françaises". Économie appliquée 39, n.º 2 (1986): 337–68. http://dx.doi.org/10.3406/ecoap.1986.4076.
Texto completoFortin, Nicole M. "L’impact des règles de prêts hypothécaires sur l’offre de travail des femmes au Canada : évidence paramétrique et non paramétrique". L’économétrie du travail et des ressources humaines 73, n.º 1-2-3 (9 de febrero de 2009): 129–59. http://dx.doi.org/10.7202/602225ar.
Texto completoVieu, Philippe. "Régression non paramétrique: une approche générale du problème de sélection automatique de modèle". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, n.º 1 (enero de 1999): 63–66. http://dx.doi.org/10.1016/s0764-4442(99)80013-5.
Texto completoAneiros, Germán y Philippe Vieu. "Modèle non paramétrique parcimonieux pour la détection des points d'impact d'une variable fonctionnelle". Comptes Rendus Mathematique 354, n.º 5 (mayo de 2016): 538–42. http://dx.doi.org/10.1016/j.crma.2016.01.019.
Texto completoBalafrej, Mohammed, Abdelatif Sahnoun y Mohamed Sadik. "Comparaison des modèles mathématiques non linéaires et détermination du modèle qui décrit au mieux la croissance de la race Sardi". Revue d’élevage et de médecine vétérinaire des pays tropicaux 73, n.º 4 (25 de noviembre de 2020): 255–61. http://dx.doi.org/10.19182/remvt.31945.
Texto completoFortin, V., T. B. M. J. Ouarda, P. F. Rasmussen y B. Bobée. "Revue bibliographique des méthodes de prévision des débits". Revue des sciences de l'eau 10, n.º 4 (12 de abril de 2005): 461–87. http://dx.doi.org/10.7202/705289ar.
Texto completoTesis sobre el tema "Modèle bayésien non paramétrique"
Rivoirard, Vincent. "Estimation bayésienne non paramétrique". Phd thesis, Université Paris-Diderot - Paris VII, 2002. http://tel.archives-ouvertes.fr/tel-00002149.
Texto completoSodjo, Jessica. "Modèle bayésien non paramétrique pour la segmentation jointe d'un ensemble d'images avec des classes partagées". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0152/document.
Texto completoThis work concerns the joint segmentation of a set images in a Bayesian framework. The proposed model combines the hierarchical Dirichlet process (HDP) and the Potts random field. Hence, for a set of images, each is divided into homogeneous regions and similar regions between images are grouped into classes. On the one hand, thanks to the HDP, it is not necessary to define a priori the number of regions per image and the number of classes, common or not.On the other hand, the Potts field ensures a spatial consistency. The arising a priori and a posteriori distributions are complex and makes it impossible to compute analytically estimators. A Gibbs algorithm is then proposed to generate samples of the distribution a posteriori. Moreover,a generalized Swendsen-Wang algorithm is developed for a better exploration of the a posteriori distribution. Finally, a sequential Monte Carlo sampler is defined for the estimation of the hyperparameters of the model.These methods have been evaluated on toy examples and natural images. The choice of the best partition is done by minimization of a numbering free criterion. The performance are assessed by metrics well-known in statistics but unused in image segmentation
Elvira, Clément. "Modèles bayésiens pour l’identification de représentations antiparcimonieuses et l’analyse en composantes principales bayésienne non paramétrique". Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0016/document.
Texto completoThis thesis proposes Bayesian parametric and nonparametric models for signal representation. The first model infers a higher dimensional representation of a signal for sake of robustness by enforcing the information to be spread uniformly. These so called anti-sparse representations are obtained by solving a linear inverse problem with an infinite-norm penalty. We propose in this thesis a Bayesian formulation of anti-sparse coding involving a new probability distribution, referred to as the democratic prior. A Gibbs and two proximal samplers are proposed to approximate Bayesian estimators. The algorithm is called BAC-1. Simulations on synthetic data illustrate the performances of the two proposed samplers and the results are compared with state-of-the art methods. The second model identifies a lower dimensional representation of a signal for modelisation and model selection. Principal component analysis is very popular to perform dimension reduction. The selection of the number of significant components is essential but often based on some practical heuristics depending on the application. Few works have proposed a probabilistic approach to infer the number of significant components. We propose a Bayesian nonparametric principal component analysis called BNP-PCA. The proposed model involves an Indian buffet process to promote a parsimonious use of principal components, which is assigned a prior distribution defined on the manifold of orthonormal basis. Inference is done using MCMC methods. The estimators of the latent dimension are theoretically and empirically studied. The relevance of the approach is assessed on two applications
Autin, Florent. "Point de vue maxiset en estimation non paramétrique". Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00008542.
Texto completoNaulet, Zacharie. "Développement d'un modèle particulaire pour la régression indirecte non paramétrique". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED057/document.
Texto completoThis dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements
Gayraud, Ghislaine. "Vitesses et procédures statistiques minimax dans des problèmes d'estimation et des tests d'hypothèses". Habilitation à diriger des recherches, Université de Rouen, 2007. http://tel.archives-ouvertes.fr/tel-00207687.
Texto completoLa première thèmatique porte sur la résolution via l'approche minimax de divers problèmes d'estimation et de tests d'hypothèses dans un cadre non-paramétrique.
En statistique Bayésienne non-paramétrique, je me suis intéressée à un problème d'estimation d'ensembles à niveau. Les résultats obtenus résultent de l'étude des propriétés asymptotiques d'estimation Bayésienne d'ensembles à niveau. Ce sont des résultats généraux au sens où la consistance et la vitesse de convergence de l'estimateur Bayésien sont établies pour une large classe de lois a priori.
La troisième thématique concerne un problème d'estimation paramétrique dans un modèle de déconvolution aveugle bruitée : il s'agit de restituer la loi du signal entrant. La consistance ainsi que la distribution asymptotique d'une nouvelle procédure d'estimation sont établies.
Okabe, Shu. "Modèles faiblement supervisés pour la documentation automatique des langues". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG091.
Texto completoIn the wake of the threat of extinction of half of the languages spoken today by the end of the century, language documentation is a field of linguistics notably dedicated to the recording, annotation, and archiving of data. In this context, computational language documentation aims to devise tools for linguists to ease several documentation steps through natural language processing approaches.As part of the CLD2025 computational language documentation project, this thesis focuses mainly on two tasks: word segmentation to identify word boundaries in an unsegmented transcription of a recorded sentence and automatic interlinear glossing to predict linguistic annotations for each sentence unit.For the first task, we improve the performance of the Bayesian non-parametric models used until now through weak supervision. For this purpose, we leverage realistically available resources during documentation, such as already-segmented sentences or dictionaries. Since we still observe an over-segmenting tendency in our models, we introduce a second segmentation level: the morphemes. Our experiments with various types of two-level segmentation models indicate a slight improvement in the segmentation quality. However, we also face limitations in differentiating words from morphemes, using statistical cues only. The second task concerns the generation of either grammatical or lexical glosses. As the latter cannot be predicted using training data solely, our statistical sequence-labelling model adapts the set of possible labels for each sentence and provides a competitive alternative to the most recent neural models
Vernet, Elodie Edith. "Modèles de mélange et de Markov caché non-paramétriques : propriétés asymptotiques de la loi a posteriori et efficacité". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS418/document.
Texto completoLatent models have been widely used in diverse fields such as speech recognition, genomics, econometrics. Because parametric modeling of emission distributions, that is the distributions of an observation given the latent state, may lead to poor results in practice, in particular for clustering purposes, recent interest in using non parametric latent models appeared in applications. Yet little thoughts have been given to theory in this framework. During my PhD I have been interested in the asymptotic behaviour of estimators (in the frequentist case) and the posterior distribution (in the Bayesian case) in two particuliar non parametric latent models: hidden Markov models and mixture models. I have first studied the concentration of the posterior distribution in non parametric hidden Markov models. More precisely, I have considered posterior consistency and posterior concentration rates. Finally, I have been interested in efficient estimation of the mixture parameter in semi parametric mixture models
Mismer, Romain. "Convergence et spike and Slab Bayesian posterior distributions in some high dimensional models". Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC064.
Texto completoThe first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on the Spike and Slab prior to derive minimax convergence of the posterior second moment for Cauchy Slabs and a suboptimality result for the Laplace Slab is proved. Next, with a special choice of Slab convergence with the sharp minimax constant is derived. The second main focus is the density estimation model using a special Polya tree prior where the variables in the tree construction follow a Spike and Slab type distribution. Adaptive minimax convergence in the supremum norm of the posterior distribution as well as a nonparametric Bernstein-von Mises theorem are obtained
Li, Shuxian. "Modélisation spatio-temporelle pour l'esca de la vigne à l'échelle de la parcelle". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0313/document.
Texto completoEsca grapevine disease is one of the incurable dieback disease with the etiology not completely elucidated. It represents one of the major threats for viticulture around the world. To better understand the underlying process of esca spread and the risk factors of this disease, we carried out quantitative analyses of the spatio-temporal development of esca at vineyard scale. In order to detect the spatial correlation among the diseased vines, the non-parametric statistical tests were applied to the spatio-temporal data of esca foliar symptom expression for 15 vineyards in Bordeaux region. Among vineyards, a large range of spatial patterns, from random to strongly structured, were found. In the vineyards with strongly aggregated patterns, no significant increase in the size of cluster and local spread from symptomatic vines was shown, suggesting an effect of the environment in the explanation of this aggregation. To model the foliar symptom occurrence, we developed hierarchical logistic regression models by integrating exogenous covariates, covariates of neighboring symptomatic vines already diseased, and also a latent process with spatio-temporal auto-correlation. The Bayesian inferences of these models were performed by INLA (Inverse Nested Laplace Approximation) approach. The results confirmed the effect of environmental factors on the occurrence risk of esca symptom. The secondary locally spread of esca from symptomatic vines located on the same row or out of row was not shown. A two-step centered auto-logistic regression model, which explicitly integrated the spatio-temporal neighboring structure, was also developed. At last, a geostatistical method was proposed to interpolate data with a particular anisotropic structure. It allowed interpolating the ancillary variable, electrical resistivity of soil, which were used to estimate the available soil water content at vine-scale. These geostatistical methods and spatio-temporal statistical methods developed in this thesis offered outlook to identify risk factors, and thereafter to predict the development of esca grapevine disease in different agronomical contexts