Artículos de revistas sobre el tema "ML prognostic model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "ML prognostic model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Uneno, Yu, Tadayuki Kou, Masashi Kanai, Michio Yamamoto, Peng Xue, Yukiko Mori, Yasushi Kudo et al. "Prognostic model for survival in patients with advanced pancreatic cancer receiving palliative chemotherapy." Journal of Clinical Oncology 33, n.º 3_suppl (20 de enero de 2015): 248. http://dx.doi.org/10.1200/jco.2015.33.3_suppl.248.
Texto completoShen, Ziyuan, Shuo Zhang, Yaxue Jiao, Yuye Shi, Hao Zhang, Fei Wang, Ling Wang et al. "LASSO Model Better Predicted the Prognosis of DLBCL than Random Forest Model: A Retrospective Multicenter Analysis of HHLWG". Journal of Oncology 2022 (16 de septiembre de 2022): 1–10. http://dx.doi.org/10.1155/2022/1618272.
Texto completoQin, Yuchao, Ahmed Alaa, Andres Floto y Mihaela van der Schaar. "External validity of machine learning-based prognostic scores for cystic fibrosis: A retrospective study using the UK and Canadian registries". PLOS Digital Health 2, n.º 1 (12 de enero de 2023): e0000179. http://dx.doi.org/10.1371/journal.pdig.0000179.
Texto completoFilipow, Nicole, Eleanor Main, Neil J. Sebire, John Booth, Andrew M. Taylor, Gwyneth Davies y Sanja Stanojevic. "Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review". BMJ Open Respiratory Research 9, n.º 1 (marzo de 2022): e001165. http://dx.doi.org/10.1136/bmjresp-2021-001165.
Texto completoFerroni, Patrizia, Fabio Zanzotto, Silvia Riondino, Noemi Scarpato, Fiorella Guadagni y Mario Roselli. "Breast Cancer Prognosis Using a Machine Learning Approach". Cancers 11, n.º 3 (7 de marzo de 2019): 328. http://dx.doi.org/10.3390/cancers11030328.
Texto completoMuscas, Giovanni, Tommaso Matteuzzi, Eleonora Becattini, Simone Orlandini, Francesca Battista, Antonio Laiso, Sergio Nappini et al. "Development of machine learning models to prognosticate chronic shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage". Acta Neurochirurgica 162, n.º 12 (8 de julio de 2020): 3093–105. http://dx.doi.org/10.1007/s00701-020-04484-6.
Texto completoPark, Hyung Soon, Ji Soo Park, Yun Ho Roh, Jieun Moon, Dong Sup Yoon y Hei-Cheul Jeung. "Prognostic factors and scoring model for survival in advanced biliary tract cancer." Journal of Clinical Oncology 35, n.º 4_suppl (1 de febrero de 2017): 264. http://dx.doi.org/10.1200/jco.2017.35.4_suppl.264.
Texto completoHulsbergen, Alexander, Yu Tung Lo, Vasileios Kavouridis, John Phillips, Timothy Smith, Joost Verhoeff, Kun-Hsing Yu, Marike Broekman y Omar Arnaout. "SURG-02. SURVIVAL PREDICTION AFTER NEUROSURGICAL RESECTION OF BRAIN METASTASES: A MACHINE LEARNING APPROACH". Neuro-Oncology 22, Supplement_2 (noviembre de 2020): ii203. http://dx.doi.org/10.1093/neuonc/noaa215.849.
Texto completoXiao, Changhu, Yuan Guo, Kaixuan Zhao, Sha Liu, Nongyue He, Yi He, Shuhong Guo y Zhu Chen. "Prognostic Value of Machine Learning in Patients with Acute Myocardial Infarction". Journal of Cardiovascular Development and Disease 9, n.º 2 (11 de febrero de 2022): 56. http://dx.doi.org/10.3390/jcdd9020056.
Texto completoDou, Guanhua, Dongkai Shan, Kai Wang, Xi Wang, Zinuan Liu, Wei Zhang, Dandan Li et al. "Integrating Coronary Plaque Information from CCTA by ML Predicts MACE in Patients with Suspected CAD". Journal of Personalized Medicine 12, n.º 4 (7 de abril de 2022): 596. http://dx.doi.org/10.3390/jpm12040596.
Texto completoBel’skaya, L. V. y V. K. Kosenok. "A new field of application of saliva tests for prognostic purpose: focus on lung cancer". Biomedical Chemistry: Research and Methods 3, n.º 3 (2020): e00133. http://dx.doi.org/10.18097/bmcrm00133.
Texto completoNadali, Gianpaolo, Luisa Tavecchia, Elisabetta Zanolin, Valeria Bonfante, Simonetta Viviani, Edgarda Camerini, Pellegrino Musto et al. "Serum Level of the Soluble Form of the CD30 Molecule Identifies Patients With Hodgkin's Disease at High Risk of Unfavorable Outcome". Blood 91, n.º 8 (15 de abril de 1998): 3011–16. http://dx.doi.org/10.1182/blood.v91.8.3011.3011_3011_3016.
Texto completoAndaur Navarro, Constanza L., Johanna A. A. G. Damen, Toshihiko Takada, Steven W. J. Nijman, Paula Dhiman, Jie Ma, Gary S. Collins et al. "Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques". BMJ Open 10, n.º 11 (noviembre de 2020): e038832. http://dx.doi.org/10.1136/bmjopen-2020-038832.
Texto completoNuñez-Garcia, Jean C., Antonio Sánchez-Puente, Jesús Sampedro-Gómez, Victor Vicente-Palacios, Manuel Jiménez-Navarro, Armando Oterino-Manzanas, Javier Jiménez-Candil, P. Ignacio Dorado-Diaz y Pedro L. Sánchez. "Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model". Journal of Clinical Medicine 11, n.º 9 (7 de mayo de 2022): 2636. http://dx.doi.org/10.3390/jcm11092636.
Texto completoWang, Xin, Yilun Han, Wei Xue, Guangwen Yang y Guang J. Zhang. "Stable climate simulations using a realistic general circulation model with neural network parameterizations for atmospheric moist physics and radiation processes". Geoscientific Model Development 15, n.º 9 (16 de mayo de 2022): 3923–40. http://dx.doi.org/10.5194/gmd-15-3923-2022.
Texto completoDzis, Ivan, Oleksandra Tomashevska, Yevhen Dzis y Zoryana Korytko. "Prediction of survival in non-Hodgkin lymphoma based on markers of systemic inflammation, anemia, hypercoagulability, dyslipidemia, and Eastern Cooperative Oncology Group performance status". Acta Haematologica Polonica 51, n.º 1 (13 de marzo de 2020): 34–41. http://dx.doi.org/10.2478/ahp-2020-0008.
Texto completoBruschetta, Roberta, Gennaro Tartarisco, Lucia Francesca Lucca, Elio Leto, Maria Ursino, Paolo Tonin, Giovanni Pioggia y Antonio Cerasa. "Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way?" Biomedicines 10, n.º 3 (16 de marzo de 2022): 686. http://dx.doi.org/10.3390/biomedicines10030686.
Texto completoSetiawan, Rinaldy T., Eko Prasetyo, Maximillian Ch Oley y Fredrik G. Langi. "Relationship between Serum Fibronectin and Level of Consciousness according to FOUR Score in Traumatic Brain Injury Patients". e-CliniC 10, n.º 2 (18 de abril de 2022): 160. http://dx.doi.org/10.35790/ecl.v10i2.39165.
Texto completoLin, Weiyuan, Lifeng Que, Guisen Lin, Rui Chen, Qiyang Lu, M. D. Zhicheng Du, M. D. Hui Liu, Zhuliang Yu y Meiping Huang. "Using Machine Learning to Predict Five-Year Reintervention Risk in Type B Aortic Dissection Patients After Thoracic Endovascular Aortic Repair". Journal of Medical Imaging and Health Informatics 11, n.º 6 (1 de junio de 2021): 1560–67. http://dx.doi.org/10.1166/jmihi.2021.3813.
Texto completoKumar, Shaji, Angela Dispenzieri, Martha Q. Lacy, Suzanne R. Hayman, Francis K. Buadi, Colin Colby, Kristina Laumann et al. "Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements". Journal of Clinical Oncology 30, n.º 9 (20 de marzo de 2012): 989–95. http://dx.doi.org/10.1200/jco.2011.38.5724.
Texto completoHo, Shu-Yein, Po-Hong Liu, Chia-Yang Hsu, Yi-Hsiang Huang, Jia-I. Liao, Chien-Wei Su, Ming-Chih Hou y Teh-Ia Huo. "A New Tumor Burden Score and Albumin–Bilirubin Grade-Based Prognostic Model for Hepatocellular Carcinoma". Cancers 14, n.º 3 (27 de enero de 2022): 649. http://dx.doi.org/10.3390/cancers14030649.
Texto completoKantauskaitė, Marta, Agnė Laučytė-Cibulskienė y Marius Miglinas. "Histopathological Classification—A Prognostic Tool for Rapidly Progressive Glomerulonephritis". Medicina 54, n.º 2 (17 de abril de 2018): 17. http://dx.doi.org/10.3390/medicina54020017.
Texto completoLorenzi, M., B. Lorenzi y R. Vernillo. "Serum Ferritin in Colorectal Cancer Patients and its Prognostic Evaluation". International Journal of Biological Markers 21, n.º 4 (octubre de 2006): 235–41. http://dx.doi.org/10.1177/172460080602100407.
Texto completoKoller, Charles Asa, B. Nebiyou Bekele, Xian Zhou, Charles Park, Zeef Estrove, Susan O’Brien, Michael Keating et al. "Thrombopoietin as an Independent Prognostic Marker in Chronic Lymphocytic Leukemia." Blood 104, n.º 11 (16 de noviembre de 2004): 1905. http://dx.doi.org/10.1182/blood.v104.11.1905.1905.
Texto completoKneev, A. Y., M. I. Shkol’nik, O. A. Bogomolov y G. M. Zharinov. "Prostate specif c antigen density as a prognostic factor in patients with prostate cancer treated with combined hormonal radiation therapy". Siberian journal of oncology 21, n.º 3 (28 de junio de 2022): 12–23. http://dx.doi.org/10.21294/1814-4861-2022-21-3-12-23.
Texto completoShin, Kabsoo, Joori Kim, Juyeon Park, Ok Ran Kim, Nahyeon Kang y In-Ho Kim. "Prognostic significance of exosomal programmed death-ligand 1 in advanced gastric cancer patients treated with first-line chemotherapy." Journal of Clinical Oncology 40, n.º 4_suppl (1 de febrero de 2022): 665. http://dx.doi.org/10.1200/jco.2022.40.4_suppl.665.
Texto completoJia, Jing, MinZhe Li, Wenhao Teng, Lin Wang, Weidong Zang, Jun Xiao y Ying Chen. "Prognostic Significance of Preoperative Serum Carcinoembryonic Antigen Varies with Lymph Node Metastasis Status in Colorectal Cancer". Journal of Oncology 2021 (27 de diciembre de 2021): 1–8. http://dx.doi.org/10.1155/2021/4487988.
Texto completoShi, Na, Lan Lan, Jiawei Luo, Ping Zhu, Thomas R. W. Ward, Peter Szatmary, Robert Sutton et al. "Predicting the Need for Therapeutic Intervention and Mortality in Acute Pancreatitis: A Two-Center International Study Using Machine Learning". Journal of Personalized Medicine 12, n.º 4 (11 de abril de 2022): 616. http://dx.doi.org/10.3390/jpm12040616.
Texto completoTschepe, Merle, Valerie Seeber, Isabella Zwiener, Katherina Kuhnert, Katrin Schäfer, Gerd Hasenfuß, Stavros Konstantinides, Mareike Lankeit y Claudia Dellas. "A novel H-FABP assay and a fast prognostic score for risk assessment of normotensive pulmonary embolism". Thrombosis and Haemostasis 111, n.º 05 (2014): 996–1003. http://dx.doi.org/10.1160/th13-08-0663.
Texto completoNishimura, Noriko, Masahiro Yokoyama, Kengo Takeuchi, Naoko Tsuyama, Eriko Nara, Kazuhito Suzuki, Kenji Nakano et al. "Soluble Interleukin-2 Receptors (sIL-2R) Is An Independent Prognostic Factor for Patients with Diffuse Large B Cell Lymphoma Treated with R-CHOP". Blood 118, n.º 21 (18 de noviembre de 2011): 2678. http://dx.doi.org/10.1182/blood.v118.21.2678.2678.
Texto completoChen, Fangyue, Piyawat Kantagowit, Tanawin Nopsopon, Arisa Chuklin y Krit Pongpirul. "Prediction and diagnosis of chronic kidney disease development and progression using machine-learning: Protocol for a systematic review and meta-analysis of reporting standards and model performance". PLOS ONE 18, n.º 2 (23 de febrero de 2023): e0278729. http://dx.doi.org/10.1371/journal.pone.0278729.
Texto completoKastritis, Efstathios, Ioannis Papassotiriou, Evangelos Terpos, Athanassios Akalestos, Erasmia Psimenou, Filia Apostolakou, Maria Roussou et al. "Growth Differentiation Factor-15 in Patients with Light Chain (AL) Amyloidosis Has Independent Prognostic Significance and Adds Prognostic Information Related to Risk of Early Death and Renal Outcomes". Blood 124, n.º 21 (6 de diciembre de 2014): 306. http://dx.doi.org/10.1182/blood.v124.21.306.306.
Texto completoTanabe, H., N. Katsumata, K. Matsumoto, S. Nishio, Y. Kato, K. Yonemori, T. Kouno, C. Shimizu, M. Ando y Y. Fujiwara. "CA125 nadir as a prognostic factor in advanced ovarian carcinoma: A retrospective study of 84 patients achieving clinical CR". Journal of Clinical Oncology 24, n.º 18_suppl (20 de junio de 2006): 5060. http://dx.doi.org/10.1200/jco.2006.24.18_suppl.5060.
Texto completoFaderl, Stefan, Kim-Anh Do, Marcella M. Johnson, Michael Keating, Susan O'Brien, Iman Jilani, Alessandra Ferrajoli et al. "Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia". Blood 106, n.º 13 (15 de diciembre de 2005): 4303–7. http://dx.doi.org/10.1182/blood-2005-03-1010.
Texto completoChufal, Kundan S., Irfan Ahmad, Anjali K. Pahuja, Alexis A. Miller, Rajpal Singh y Rahul L. Chowdhary. "Application of Artificial Neural Networks for Prognostic Modeling in Lung Cancer after Combining Radiomic and Clinical Features". Asian Journal of Oncology 05, n.º 02 (julio de 2019): 050–55. http://dx.doi.org/10.1055/s-0039-3401438.
Texto completoLi, Qing, Fanfei Kong, Jian Ma, Yuting Wang, Cuicui Wang, Hui Yang, Yan Li y Xiaoxin Ma. "Nomograms Based on Fibrinogen, Albumin, Neutrophil-Lymphocyte Ratio, and Carbohydrate Antigen 125 for Predicting Endometrial Cancer Prognosis". Cancers 14, n.º 22 (16 de noviembre de 2022): 5632. http://dx.doi.org/10.3390/cancers14225632.
Texto completoAgibetov, Asan, Benjamin Seirer, Theresa-Marie Dachs, Matthias Koschutnik, Daniel Dalos, René Rettl, Franz Duca et al. "Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study". Journal of Clinical Medicine 9, n.º 5 (3 de mayo de 2020): 1334. http://dx.doi.org/10.3390/jcm9051334.
Texto completoLlovet, Josep M., Amit G. Singal, Augusto Villanueva, Richard S. Finn, Masatoshi Kudo, Peter R. Galle, Chunxiao Wang, Ryan C. Widau, Elena Gonzalez Gugel y Andrew X. Zhu. "Prognostic and predictive factors in patients treated with ramucirumab (RAM) with advanced hepatocellular carcinoma (aHCC) and elevated alpha-fetoprotein (AFP): Results from two phase III trials." Journal of Clinical Oncology 39, n.º 15_suppl (20 de mayo de 2021): 4146. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.4146.
Texto completoWiegel, Thomas, Detlef Bartkowiak, Dirk Bottke, Alessandra Siegmann, Volker Budach y Wolfgang Hinkelbein. "Prognostic significance of the PSA nadir after salvage radiotherapy following radical prostatectomy in prostate cancer." Journal of Clinical Oncology 33, n.º 7_suppl (1 de marzo de 2015): 207. http://dx.doi.org/10.1200/jco.2015.33.7_suppl.207.
Texto completoSeidel, Carina, Anders Sundan, Martin Hjorth, Ingemar Turesson, Inger Marie S. Dahl, Niels Abildgaard, Anders Waage y Magne Børset. "Serum syndecan-1: a new independent prognostic marker in multiple myeloma". Blood 95, n.º 2 (15 de enero de 2000): 388–92. http://dx.doi.org/10.1182/blood.v95.2.388.
Texto completoGershtein, Elena Sergeyevna, E. A. Korotkova, A. P. Petrosyan, E. A. Suleymanov, I. S. Stilidi y N. E. Kushlinskii. "Prognostic significance of VEGF signaling system components and matrix metalloproteinases in blood serum of gastric cancer patients". Russian Clinical Laboratory Diagnostics 66, n.º 11 (29 de noviembre de 2021): 650–54. http://dx.doi.org/10.51620/0869-2084-2021-66-11-650-654.
Texto completoAlfraihat, Ausilah, Amer F. Samdani y Sriram Balasubramanian. "Predicting curve progression for adolescent idiopathic scoliosis using random forest model". PLOS ONE 17, n.º 8 (11 de agosto de 2022): e0273002. http://dx.doi.org/10.1371/journal.pone.0273002.
Texto completoSoof, Camilia M., Sameer Ashok Parikh, Susan L. Slager, Kari G. Rabe, Matthew Ghermezi, Tanya M. Spektor, Neil E. Kay y James R. Berenson. "Serum B-cell maturation antigen as a prognostic marker for untreated chronic lymphocytic leukemia." Journal of Clinical Oncology 37, n.º 15_suppl (20 de mayo de 2019): 7525. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.7525.
Texto completoTefferi, Ayalew, Ruben A. Mesa, Jocelin Huang, Animesh D. Pardanani, Kebede Hussein, Susan Schwager, Curtis A. Hanson y David P. Steensma. "Red Blood Cell Transfusion Requirement at Diagnosis Adversely Affects Both Overall and Leukemia-Free Survival in Primary Myelofibrosis - Increased Serum Ferritin or Total Transfusion Burden Does Not". Blood 112, n.º 11 (16 de noviembre de 2008): 5232. http://dx.doi.org/10.1182/blood.v112.11.5232.5232.
Texto completoRaoof, Mustafa, Zeljka Jutric, Laleh Golkar Melstrom, Susanne Warner, Yanghee Woo, Yuman Fong y Gagandeep Singh. "Prognostic significance of chromogranin A in small pancreatic neuroendocrine tumors." Journal of Clinical Oncology 35, n.º 4_suppl (1 de febrero de 2017): 375. http://dx.doi.org/10.1200/jco.2017.35.4_suppl.375.
Texto completoHarrison, Rebecca A., Rongjie Liu, Vikram Rao, Melissa Petersen, Hannah Dyson, Shiao-Pei S. Weathers, Kristin Alfaro-Munoz, John Frederick De Groot y Shelli Kesler. "Evaluating the capacity of connectome analysis to predict survival in high-grade astrocytoma." Journal of Clinical Oncology 37, n.º 15_suppl (20 de mayo de 2019): 2049. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.2049.
Texto completoHan, Liz Y., Charles N. Landen, Aparna A. Kamat, Adriana Lopez, David P. Bender, Peter Mueller, Rosemarie Schmandt, David M. Gershenson y Anil K. Sood. "Preoperative Serum Tissue Factor Levels Are an Independent Prognostic Factor in Patients With Ovarian Carcinoma". Journal of Clinical Oncology 24, n.º 5 (10 de febrero de 2006): 755–61. http://dx.doi.org/10.1200/jco.2005.02.9181.
Texto completoCéruse, Philippe, Muriel Rabilloud, Anne Charrié, Christian Dubreuil y François Disant. "Study of Cyfra 21–1, a Tumor Marker, in Head and Neck Squamous Cell Carcinoma". Annals of Otology, Rhinology & Laryngology 114, n.º 10 (octubre de 2005): 768–76. http://dx.doi.org/10.1177/000348940511401006.
Texto completoRujirojindakul, Pairaya y Arnuparp Lekhakula. "Prognostic Significance of Serum Proangiogenic Molecules in Patients withDe NovoNon-Hodgkin Lymphomas". Scientific World Journal 2012 (2012): 1–5. http://dx.doi.org/10.1100/2012/215231.
Texto completoSarfati, M., S. Chevret, C. Chastang, G. Biron, P. Stryckmans, G. Delespesse, JL Binet, H. Merle-Beral y D. Bron. "Prognostic importance of serum soluble CD23 level in chronic lymphocytic leukemia". Blood 88, n.º 11 (1 de diciembre de 1996): 4259–64. http://dx.doi.org/10.1182/blood.v88.11.4259.4259.
Texto completo