Literatura académica sobre el tema "ML prognostic model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "ML prognostic model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "ML prognostic model"
Uneno, Yu, Tadayuki Kou, Masashi Kanai, Michio Yamamoto, Peng Xue, Yukiko Mori, Yasushi Kudo et al. "Prognostic model for survival in patients with advanced pancreatic cancer receiving palliative chemotherapy." Journal of Clinical Oncology 33, n.º 3_suppl (20 de enero de 2015): 248. http://dx.doi.org/10.1200/jco.2015.33.3_suppl.248.
Texto completoShen, Ziyuan, Shuo Zhang, Yaxue Jiao, Yuye Shi, Hao Zhang, Fei Wang, Ling Wang et al. "LASSO Model Better Predicted the Prognosis of DLBCL than Random Forest Model: A Retrospective Multicenter Analysis of HHLWG". Journal of Oncology 2022 (16 de septiembre de 2022): 1–10. http://dx.doi.org/10.1155/2022/1618272.
Texto completoQin, Yuchao, Ahmed Alaa, Andres Floto y Mihaela van der Schaar. "External validity of machine learning-based prognostic scores for cystic fibrosis: A retrospective study using the UK and Canadian registries". PLOS Digital Health 2, n.º 1 (12 de enero de 2023): e0000179. http://dx.doi.org/10.1371/journal.pdig.0000179.
Texto completoFilipow, Nicole, Eleanor Main, Neil J. Sebire, John Booth, Andrew M. Taylor, Gwyneth Davies y Sanja Stanojevic. "Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review". BMJ Open Respiratory Research 9, n.º 1 (marzo de 2022): e001165. http://dx.doi.org/10.1136/bmjresp-2021-001165.
Texto completoFerroni, Patrizia, Fabio Zanzotto, Silvia Riondino, Noemi Scarpato, Fiorella Guadagni y Mario Roselli. "Breast Cancer Prognosis Using a Machine Learning Approach". Cancers 11, n.º 3 (7 de marzo de 2019): 328. http://dx.doi.org/10.3390/cancers11030328.
Texto completoMuscas, Giovanni, Tommaso Matteuzzi, Eleonora Becattini, Simone Orlandini, Francesca Battista, Antonio Laiso, Sergio Nappini et al. "Development of machine learning models to prognosticate chronic shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage". Acta Neurochirurgica 162, n.º 12 (8 de julio de 2020): 3093–105. http://dx.doi.org/10.1007/s00701-020-04484-6.
Texto completoPark, Hyung Soon, Ji Soo Park, Yun Ho Roh, Jieun Moon, Dong Sup Yoon y Hei-Cheul Jeung. "Prognostic factors and scoring model for survival in advanced biliary tract cancer." Journal of Clinical Oncology 35, n.º 4_suppl (1 de febrero de 2017): 264. http://dx.doi.org/10.1200/jco.2017.35.4_suppl.264.
Texto completoHulsbergen, Alexander, Yu Tung Lo, Vasileios Kavouridis, John Phillips, Timothy Smith, Joost Verhoeff, Kun-Hsing Yu, Marike Broekman y Omar Arnaout. "SURG-02. SURVIVAL PREDICTION AFTER NEUROSURGICAL RESECTION OF BRAIN METASTASES: A MACHINE LEARNING APPROACH". Neuro-Oncology 22, Supplement_2 (noviembre de 2020): ii203. http://dx.doi.org/10.1093/neuonc/noaa215.849.
Texto completoXiao, Changhu, Yuan Guo, Kaixuan Zhao, Sha Liu, Nongyue He, Yi He, Shuhong Guo y Zhu Chen. "Prognostic Value of Machine Learning in Patients with Acute Myocardial Infarction". Journal of Cardiovascular Development and Disease 9, n.º 2 (11 de febrero de 2022): 56. http://dx.doi.org/10.3390/jcdd9020056.
Texto completoDou, Guanhua, Dongkai Shan, Kai Wang, Xi Wang, Zinuan Liu, Wei Zhang, Dandan Li et al. "Integrating Coronary Plaque Information from CCTA by ML Predicts MACE in Patients with Suspected CAD". Journal of Personalized Medicine 12, n.º 4 (7 de abril de 2022): 596. http://dx.doi.org/10.3390/jpm12040596.
Texto completoTesis sobre el tema "ML prognostic model"
Navicelli, Andrea, Mario Tucci y Filippo De Carlo. "Analisi ed applicazione di modelli diagnostici e prognostici per guasti e prestazioni di componenti di impianti industriali nell’era I4.0". Doctoral thesis, 2021. http://hdl.handle.net/2158/1234822.
Texto completoCapítulos de libros sobre el tema "ML prognostic model"
Aria, Massimo, Corrado Cuccurullo y Agostino Gnasso. "Supporting decision-makers in healthcare domain. A comparative study of two interpretative proposals for Random Forests". En Proceedings e report, 179–84. Florence: Firenze University Press, 2021. http://dx.doi.org/10.36253/978-88-5518-461-8.34.
Texto completoKolossváry, Márton. "Artificial intelligence in cardiac CT". En EACVI Handbook of Cardiovascular CT, editado por Oliver Gaemperli, Pal Maurovich-Horvat, Koen Nieman, Gianluca Pontone y Francesca Pugliese, 349—C3.16.S7. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/med/9780192884459.003.0037.
Texto completoChaudhry, Abdul Aziz, Rafia Mumtaz, Usman Ahmad Siddiqui, Syed Hassan Muzammil y Muhammad Ali Tahir. "Automated Multi-Sensor Board for IoT and ML-Enabled Livestock Monitoring". En Empowering Sustainable Industrial 4.0 Systems With Machine Intelligence, 60–85. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9201-4.ch003.
Texto completoChhillar, Rajender Singh. "Disease Prediction using Deep Learning Algorithms in Healthcare Sector". En Machine Learning Algorithms for Intelligent Data Analytics. Technoarete Research And Development Association, 2022. http://dx.doi.org/10.36647/mlaida/2022.12.b1.ch008.
Texto completoBrucato, Antonio y Stefano Maggiolini. "Pericardial effusion". En ESC CardioMed, editado por Yehuda Adler, 1572–75. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0377.
Texto completoBrucato, Antonio y Stefano Maggiolini. "Pericardial effusion". En ESC CardioMed, editado por Yehuda Adler, 1572–75. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0377_update_001.
Texto completoActas de conferencias sobre el tema "ML prognostic model"
Almeida Filho, Benedito de Sousa, Michelle Sako Omodei, Eduardo Carvalho Pessoa, Heloisa de Luca Vespoli y Eliana Aguiar Petri Nahas. "NEGATIVE IMPACT OF SERUM VITAMIN D DEFICIENCY ON BREAST CANCER SURVIVAL". En XXIV Congresso Brasileiro de Mastologia. Mastology, 2022. http://dx.doi.org/10.29289/259453942022v32s1058.
Texto completoAl-Mannai, Rashid Ebrahim, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, Kishor Kumar Sadasivuni, Huseyin Cagatay Yalcin, Hassen M. Ouakad, Issam Bahadur, Somaya Al-Maadeed y Asiya Albusaidi. "Artificial Intelligence in Predicting Heart Failure". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0130.
Texto completoKornev, Denis, Roozbeh Sadeghian, Stanley Nwoji, Qinghua He, Amir Gandjbbakhche y Siamak Aram. "Machine Learning-Based Gaming Behavior Prediction Platform". En 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001826.
Texto completoViale, Luca, Alessandro Paolo Daga, Luigi Garibaldi, Salvatore Caronia y Ilaria Ronchi. "Books Trimmer Industrial Machine Knives Diagnosis: A Condition-Based Maintenance Strategy Through Vibration Monitoring via Novelty Detection". En ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94547.
Texto completoАпарцин, Константин y Konstantin Apartsin. "The results of fundamental and translational research carried out In the Department of Biomedical Research and Technology of the SBRAS INC in 2012-2016". En Topical issues of translational medicine: a collection of articles dedicated to the 5th anniversary of the day The creation of a department for biomedical research and technology of the Irkutsk Scientific Center Siberian Branch of RAS. Москва: INFRA-M Academic Publishing LLC., 2017. http://dx.doi.org/10.12737/conferencearticle_58be81eca22ad.
Texto completo