Artículos de revistas sobre el tema "ML fairness"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "ML fairness".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Weinberg, Lindsay. "Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches". Journal of Artificial Intelligence Research 74 (6 de mayo de 2022): 75–109. http://dx.doi.org/10.1613/jair.1.13196.
Texto completoBærøe, Kristine, Torbjørn Gundersen, Edmund Henden y Kjetil Rommetveit. "Can medical algorithms be fair? Three ethical quandaries and one dilemma". BMJ Health & Care Informatics 29, n.º 1 (abril de 2022): e100445. http://dx.doi.org/10.1136/bmjhci-2021-100445.
Texto completoYanjun Li, Yanjun Li, Huan Huang Yanjun Li, Qiang Geng Huan Huang, Xinwei Guo Qiang Geng y Yuyu Yuan Xinwei Guo. "Fairness Measures of Machine Learning Models in Judicial Penalty Prediction". 網際網路技術學刊 23, n.º 5 (septiembre de 2022): 1109–16. http://dx.doi.org/10.53106/160792642022092305019.
Texto completoGhosh, Bishwamittra, Debabrota Basu y Kuldeep S. Meel. "Algorithmic Fairness Verification with Graphical Models". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 9 (28 de junio de 2022): 9539–48. http://dx.doi.org/10.1609/aaai.v36i9.21187.
Texto completoKuzucu, Selim, Jiaee Cheong, Hatice Gunes y Sinan Kalkan. "Uncertainty as a Fairness Measure". Journal of Artificial Intelligence Research 81 (13 de octubre de 2024): 307–35. http://dx.doi.org/10.1613/jair.1.16041.
Texto completoWeerts, Hilde, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl y Frank Hutter. "Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML". Journal of Artificial Intelligence Research 79 (17 de febrero de 2024): 639–77. http://dx.doi.org/10.1613/jair.1.14747.
Texto completoMakhlouf, Karima, Sami Zhioua y Catuscia Palamidessi. "On the Applicability of Machine Learning Fairness Notions". ACM SIGKDD Explorations Newsletter 23, n.º 1 (26 de mayo de 2021): 14–23. http://dx.doi.org/10.1145/3468507.3468511.
Texto completoSingh, Vivek K. y Kailash Joshi. "Integrating Fairness in Machine Learning Development Life Cycle: Fair CRISP-DM". e-Service Journal 14, n.º 2 (diciembre de 2022): 1–24. http://dx.doi.org/10.2979/esj.2022.a886946.
Texto completoZhou, Zijian, Xinyi Xu, Rachael Hwee Ling Sim, Chuan Sheng Foo y Bryan Kian Hsiang Low. "Probably Approximate Shapley Fairness with Applications in Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 5 (26 de junio de 2023): 5910–18. http://dx.doi.org/10.1609/aaai.v37i5.25732.
Texto completoSreerama, Jeevan y Gowrisankar Krishnamoorthy. "Ethical Considerations in AI Addressing Bias and Fairness in Machine Learning Models". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1, n.º 1 (14 de septiembre de 2022): 130–38. http://dx.doi.org/10.60087/jklst.vol1.n1.p138.
Texto completoBlow, Christina Hastings, Lijun Qian, Camille Gibson, Pamela Obiomon y Xishuang Dong. "Comprehensive Validation on Reweighting Samples for Bias Mitigation via AIF360". Applied Sciences 14, n.º 9 (30 de abril de 2024): 3826. http://dx.doi.org/10.3390/app14093826.
Texto completoTeodorescu, Mike, Lily Morse, Yazeed Awwad y Gerald Kane. "Failures of Fairness in Automation Require a Deeper Understanding of Human-ML Augmentation". MIS Quarterly 45, n.º 3 (1 de septiembre de 2021): 1483–500. http://dx.doi.org/10.25300/misq/2021/16535.
Texto completoPessach, Dana y Erez Shmueli. "A Review on Fairness in Machine Learning". ACM Computing Surveys 55, n.º 3 (30 de abril de 2023): 1–44. http://dx.doi.org/10.1145/3494672.
Texto completoGhosh, Bishwamittra, Debabrota Basu y Kuldeep S. Meel. "Justicia: A Stochastic SAT Approach to Formally Verify Fairness". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 7554–63. http://dx.doi.org/10.1609/aaai.v35i9.16925.
Texto completoSikstrom, Laura, Marta M. Maslej, Katrina Hui, Zoe Findlay, Daniel Z. Buchman y Sean L. Hill. "Conceptualising fairness: three pillars for medical algorithms and health equity". BMJ Health & Care Informatics 29, n.º 1 (enero de 2022): e100459. http://dx.doi.org/10.1136/bmjhci-2021-100459.
Texto completoDrira, Mohamed, Sana Ben Hassine, Michael Zhang y Steven Smith. "Machine Learning Methods in Student Mental Health Research: An Ethics-Centered Systematic Literature Review". Applied Sciences 14, n.º 24 (16 de diciembre de 2024): 11738. https://doi.org/10.3390/app142411738.
Texto completoKumbo, Lazaro Inon, Victor Simon Nkwera y Rodrick Frank Mero. "Evaluating the Ethical Practices in Developing AI and Ml Systems in Tanzania". ABUAD Journal of Engineering Research and Development (AJERD) 7, n.º 2 (septiembre de 2024): 340–51. http://dx.doi.org/10.53982/ajerd.2024.0702.33-j.
Texto completoEzzeldin, Yahya H., Shen Yan, Chaoyang He, Emilio Ferrara y A. Salman Avestimehr. "FairFed: Enabling Group Fairness in Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junio de 2023): 7494–502. http://dx.doi.org/10.1609/aaai.v37i6.25911.
Texto completoFessenko, Dessislava. "Ethical Requirements for Achieving Fairness in Radiology Machine Learning: An Intersectionality and Social Embeddedness Approach". Journal of Health Ethics 20, n.º 1 (2024): 37–49. http://dx.doi.org/10.18785/jhe.2001.04.
Texto completoCheng, Lu. "Demystifying Algorithmic Fairness in an Uncertain World". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 20 (24 de marzo de 2024): 22662. http://dx.doi.org/10.1609/aaai.v38i20.30278.
Texto completoArslan, Ayse. "Mitigation Techniques to Overcome Data Harm in Model Building for ML". International Journal of Artificial Intelligence & Applications 13, n.º 1 (31 de enero de 2022): 73–82. http://dx.doi.org/10.5121/ijaia.2022.13105.
Texto completoVartak, Manasi. "From ML models to intelligent applications". Proceedings of the VLDB Endowment 14, n.º 13 (septiembre de 2021): 3419. http://dx.doi.org/10.14778/3484224.3484240.
Texto completoArjunan, Gopalakrishnan. "Enhancing Data Quality and Integrity in Machine Learning Pipelines: Approaches for Detecting and Mitigating Bias". International Journal of Scientific Research and Management (IJSRM) 10, n.º 09 (24 de septiembre de 2022): 940–45. http://dx.doi.org/10.18535/ijsrm/v10i9.ec04.
Texto completoSingh, Arashdeep, Jashandeep Singh, Ariba Khan y Amar Gupta. "Developing a Novel Fair-Loan Classifier through a Multi-Sensitive Debiasing Pipeline: DualFair". Machine Learning and Knowledge Extraction 4, n.º 1 (12 de marzo de 2022): 240–53. http://dx.doi.org/10.3390/make4010011.
Texto completoTambari Faith Nuka y Amos Abidemi Ogunola. "AI and machine learning as tools for financial inclusion: challenges and opportunities in credit scoring". International Journal of Science and Research Archive 13, n.º 2 (30 de noviembre de 2024): 1052–67. http://dx.doi.org/10.30574/ijsra.2024.13.2.2258.
Texto completoKeswani, Vijay y L. Elisa Celis. "Algorithmic Fairness From the Perspective of Legal Anti-discrimination Principles". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16 de octubre de 2024): 724–37. http://dx.doi.org/10.1609/aies.v7i1.31674.
Texto completoDetassis, Fabrizio, Michele Lombardi y Michela Milano. "Teaching the Old Dog New Tricks: Supervised Learning with Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 5 (18 de mayo de 2021): 3742–49. http://dx.doi.org/10.1609/aaai.v35i5.16491.
Texto completoSunday Adeola Oladosu, Christian Chukwuemeka Ike, Peter Adeyemo Adepoju, Adeoye Idowu Afolabi, Adebimpe Bolatito Ige y Olukunle Oladipupo Amoo. "Frameworks for ethical data governance in machine learning: Privacy, fairness, and business optimization". Magna Scientia Advanced Research and Reviews 7, n.º 2 (30 de abril de 2023): 096–106. https://doi.org/10.30574/msarr.2023.7.2.0043.
Texto completoCzarnowska, Paula, Yogarshi Vyas y Kashif Shah. "Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics". Transactions of the Association for Computational Linguistics 9 (2021): 1249–67. http://dx.doi.org/10.1162/tacl_a_00425.
Texto completoPark, Sojung, Eunhye Ahn, Tae-Hyuk Ahn, SangNam Ahn, Soobin Park, Eunsun Kwon, Seoyeon Ahn y Yuanyuan Yang. "ROLE OF MACHINE LEARNING (ML) IN AGING IN PLACE RESEARCH: A SCOPING REVIEW". Innovation in Aging 8, Supplement_1 (diciembre de 2024): 1215. https://doi.org/10.1093/geroni/igae098.3890.
Texto completoShah, Kanan, Yassamin Neshatvar, Elaine Shum y Madhur Nayan. "Optimizing the fairness of survival prediction models for racial/ethnic subgroups: A study on predicting post-operative survival in stage IA and IB non-small cell lung cancer." JCO Oncology Practice 20, n.º 10_suppl (octubre de 2024): 380. http://dx.doi.org/10.1200/op.2024.20.10_suppl.380.
Texto completoIslam, Rashidul, Huiyuan Chen y Yiwei Cai. "Fairness without Demographics through Shared Latent Space-Based Debiasing". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de marzo de 2024): 12717–25. http://dx.doi.org/10.1609/aaai.v38i11.29167.
Texto completoLamba, Hemank, Kit T. Rodolfa y Rayid Ghani. "An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings". ACM SIGKDD Explorations Newsletter 23, n.º 1 (26 de mayo de 2021): 69–85. http://dx.doi.org/10.1145/3468507.3468518.
Texto completoShook, Jim, Robyn Smith y Alex Antonio. "Transparency and Fairness in Machine Learning Applications". Symposium Edition - Artificial Intelligence and the Legal Profession 4, n.º 5 (abril de 2018): 443–63. http://dx.doi.org/10.37419/jpl.v4.i5.2.
Texto completoDing, Xueying, Rui Xi y Leman Akoglu. "Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16 de octubre de 2024): 384–95. http://dx.doi.org/10.1609/aies.v7i1.31644.
Texto completoGalhotra, Sainyam, Karthikeyan Shanmugam, Prasanna Sattigeri y Kush R. Varshney. "Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes". Entropy 23, n.º 12 (25 de noviembre de 2021): 1571. http://dx.doi.org/10.3390/e23121571.
Texto completoXiao, Ying, Jie M. Zhang, Yepang Liu, Mohammad Reza Mousavi, Sicen Liu y Dingyuan Xue. "MirrorFair: Fixing Fairness Bugs in Machine Learning Software via Counterfactual Predictions". Proceedings of the ACM on Software Engineering 1, FSE (12 de julio de 2024): 2121–43. http://dx.doi.org/10.1145/3660801.
Texto completoIgoche, Bern Igoche, Olumuyiwa Matthew, Peter Bednar y Alexander Gegov. "Integrating Structural Causal Model Ontologies with LIME for Fair Machine Learning Explanations in Educational Admissions". Journal of Computing Theories and Applications 2, n.º 1 (25 de junio de 2024): 65–85. http://dx.doi.org/10.62411/jcta.10501.
Texto completoVajiac, Catalina, Arun Frey, Joachim Baumann, Abigail Smith, Kasun Amarasinghe, Alice Lai, Kit T. Rodolfa y Rayid Ghani. "Preventing Eviction-Caused Homelessness through ML-Informed Distribution of Rental Assistance". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 20 (24 de marzo de 2024): 22393–400. http://dx.doi.org/10.1609/aaai.v38i20.30246.
Texto completoMetevier, Blossom. "Pursuing Social Good: An Overview of Short- and Long-Term Fairness in Classification". ACM SIGCAS Computers and Society 52, n.º 2 (septiembre de 2023): 6. http://dx.doi.org/10.1145/3656021.3656022.
Texto completoBantilan, Niels. "Themis-ml: A Fairness-Aware Machine Learning Interface for End-To-End Discrimination Discovery and Mitigation". Journal of Technology in Human Services 36, n.º 1 (2 de enero de 2018): 15–30. http://dx.doi.org/10.1080/15228835.2017.1416512.
Texto completoElglaly, Yasmine N. y Yudong Liu. "Promoting Machine Learning Fairness Education through Active Learning and Reflective Practices". ACM SIGCSE Bulletin 55, n.º 3 (julio de 2023): 4–6. http://dx.doi.org/10.1145/3610585.3610589.
Texto completoSeastedt, Kenneth P., Patrick Schwab, Zach O’Brien, Edith Wakida, Karen Herrera, Portia Grace F. Marcelo, Louis Agha-Mir-Salim et al. "Global healthcare fairness: We should be sharing more, not less, data". PLOS Digital Health 1, n.º 10 (6 de octubre de 2022): e0000102. http://dx.doi.org/10.1371/journal.pdig.0000102.
Texto completoWang, Mini Han, Ruoyu Zhou, Zhiyuan Lin, Yang Yu, Peijin Zeng, Xiaoxiao Fang, Jie yang et al. "Can Explainable Artificial Intelligence Optimize the Data Quality of Machine Learning Model? Taking Meibomian Gland Dysfunction Detections as a Case Study". Journal of Physics: Conference Series 2650, n.º 1 (1 de noviembre de 2023): 012025. http://dx.doi.org/10.1088/1742-6596/2650/1/012025.
Texto completoRaza, Shaina, Parisa Osivand Pour y Syed Raza Bashir. "Fairness in Machine Learning Meets with Equity in Healthcare". Proceedings of the AAAI Symposium Series 1, n.º 1 (3 de octubre de 2023): 149–53. http://dx.doi.org/10.1609/aaaiss.v1i1.27493.
Texto completoBegum, Shaik Salma. "JARVIS - Customer Support Chatbot with ML". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 01 (13 de enero de 2024): 1–12. http://dx.doi.org/10.55041/ijsrem28053.
Texto completoTang, Zicheng. "The Role of AI and ML in Transforming Marketing Strategies: Insights from Recent Studies". Advances in Economics, Management and Political Sciences 108, n.º 1 (27 de septiembre de 2024): 132–39. http://dx.doi.org/10.54254/2754-1169/108/20242009.
Texto completoPatel, Ekta V., Kirit J. Modi, y Maitri H. Bhavsar. "Employee Performance Evaluation Using Machine Learning". International Journal of Advances in Engineering and Management 6, n.º 11 (noviembre de 2024): 160–64. https://doi.org/10.35629/5252-0611160164.
Texto completoGoretzko, David y Laura Sophia Finja Israel. "Pitfalls of Machine Learning-Based Personnel Selection". Journal of Personnel Psychology 21, n.º 1 (enero de 2022): 37–47. http://dx.doi.org/10.1027/1866-5888/a000287.
Texto completoMangal, Mudit y Zachary A. Pardos. "Implementing equitable and intersectionality‐aware ML in education: A practical guide". British Journal of Educational Technology, 23 de mayo de 2024. http://dx.doi.org/10.1111/bjet.13484.
Texto completo