Artículos de revistas sobre el tema "ML diagnostic model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "ML diagnostic model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Liu, Xinran, James Anstey, Ron Li, Chethan Sarabu, Reiri Sono y Atul J. Butte. "Rethinking PICO in the Machine Learning Era: ML-PICO". Applied Clinical Informatics 12, n.º 02 (marzo de 2021): 407–16. http://dx.doi.org/10.1055/s-0041-1729752.
Texto completoWang, Dong, Jian Liu, Lijun Deng y Honglin Wang. "Intelligent diagnosis of resistance variant multiple fault locations of mine ventilation system based on ML-KNN". PLOS ONE 17, n.º 9 (30 de septiembre de 2022): e0275437. http://dx.doi.org/10.1371/journal.pone.0275437.
Texto completoBabar, Zaheer, Twan van Laarhoven y Elena Marchiori. "Encoder-decoder models for chest X-ray report generation perform no better than unconditioned baselines". PLOS ONE 16, n.º 11 (29 de noviembre de 2021): e0259639. http://dx.doi.org/10.1371/journal.pone.0259639.
Texto completoVenkatesh, Veeramuthu, M. M. Anishin Raj, K. Mohamed Sajith, R. Anushiadevi y T. Suriya Praba. "A precision-based diagnostic model ADOBE-accurate detection of breast cancer using logistic regression approach". Journal of Intelligent & Fuzzy Systems 39, n.º 6 (4 de diciembre de 2020): 8419–26. http://dx.doi.org/10.3233/jifs-189160.
Texto completoCarreiro Pinasco, Gustavo, Eduardo Moreno Júdice de Mattos Farina, Fabiano Novaes Barcellos Filho, Willer França Fiorotti, Matheus Coradini Mariano Ferreira, Sheila Cristina de Souza Cruz, Andre Louzada Colodette et al. "An interpretable machine learning model for covid-19 screening". Journal of Human Growth and Development 32, n.º 2 (23 de junio de 2022): 268–74. http://dx.doi.org/10.36311/jhgd.v32.13324.
Texto completoSmirnova, Darya Ilyinichna, Anastasiya Vyacheslavovna Gracheva, Elena Aleksandrovna Volynskaya, Vitaliy Vasilievich Zverev y Evgeniy Bakhtiyorovich Faizuloev. "Diagnostic value of the LAMP method with real-time fluo-rescence detection on a model of herpesvirus infection". Sanitarnyj vrač (Sanitary Doctor), n.º 1 (1 de enero de 2021): 52–61. http://dx.doi.org/10.33920/med-08-2101-06.
Texto completoBaker, Mohammed Rashad, D. Lakshmi Padmaja, R. Puviarasi, Suman Mann, Jeidy Panduro-Ramirez, Mohit Tiwari y Issah Abubakari Samori. "Implementing Critical Machine Learning (ML) Approaches for Generating Robust Discriminative Neuroimaging Representations Using Structural Equation Model (SEM)". Computational and Mathematical Methods in Medicine 2022 (14 de abril de 2022): 1–12. http://dx.doi.org/10.1155/2022/6501975.
Texto completoChatterjee, S., R. Alkhaldi, P. Yaadav, D. Bethineedi, A. Shreya y N. Bankole. "P.115 Diagnostic performance of machine learning based MR algorithm vs conventional MR images for predicting the likelihood of brain tumors". Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 49, s1 (junio de 2022): S38. http://dx.doi.org/10.1017/cjn.2022.207.
Texto completoKahlen, Jannis N., Michael Andres y Albert Moser. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault". Energies 14, n.º 20 (18 de octubre de 2021): 6816. http://dx.doi.org/10.3390/en14206816.
Texto completoGui, Chloe y Victoria Chan. "Machine learning in medicine". University of Western Ontario Medical Journal 86, n.º 2 (3 de diciembre de 2017): 76–78. http://dx.doi.org/10.5206/uwomj.v86i2.2060.
Texto completoDjulbegovic, Benjamin, Jennifer Berano Teh, Lennie Wong, Iztok Hozo y Saro H. Armenian. "Diagnostic Predictive Model for Diagnosis of Heart Failure after Hematopoietic Cell Transplantation (HCT): Comparison of Traditional Statistical with Machine Learning Modeling". Blood 134, Supplement_1 (13 de noviembre de 2019): 5799. http://dx.doi.org/10.1182/blood-2019-130764.
Texto completoKhan, Yusera Farooq, Baijnath Kaushik, Chiranji Lal Chowdhary y Gautam Srivastava. "Ensemble Model for Diagnostic Classification of Alzheimer’s Disease Based on Brain Anatomical Magnetic Resonance Imaging". Diagnostics 12, n.º 12 (16 de diciembre de 2022): 3193. http://dx.doi.org/10.3390/diagnostics12123193.
Texto completoDaimiel Naranjo, Isaac, Peter Gibbs, Jeffrey S. Reiner, Roberto Lo Gullo, Caleb Sooknanan, Sunitha B. Thakur, Maxine S. Jochelson et al. "Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis". Diagnostics 11, n.º 6 (21 de mayo de 2021): 919. http://dx.doi.org/10.3390/diagnostics11060919.
Texto completoBarayan, Mohammed A., Arwa A. Qawas, Asma S. Alghamdi, Turki S. Alkhallagi, Raghad A. Al-Dabbagh, Ghadah A. Aldabbagh y Amal I. Linjawi. "Effectiveness of Machine Learning in Assessing the Diagnostic Quality of Bitewing Radiographs". Applied Sciences 12, n.º 19 (24 de septiembre de 2022): 9588. http://dx.doi.org/10.3390/app12199588.
Texto completoAl-Hasani, Maryam, Laith R. Sultan, Hersh Sagreiya, Theodore W. Cary, Mrigendra B. Karmacharya y Chandra M. Sehgal. "Ultrasound Radiomics for the Detection of Early-Stage Liver Fibrosis". Diagnostics 12, n.º 11 (9 de noviembre de 2022): 2737. http://dx.doi.org/10.3390/diagnostics12112737.
Texto completoAksoy, Özgür, Başak Kurt, Celal Şahin Ermutlu, Kürşat Çeçen, Sadık Yayla, Metin Ekinci, İsa Özaydin y Süleyman Erdinç Ünlüer. "Fluorescein as a diagnostic marker of bladder ruptures: an experimental study on rabbit model". Journal of Veterinary Research 60, n.º 2 (1 de junio de 2016): 213–17. http://dx.doi.org/10.1515/jvetres-2016-0031.
Texto completoKoo, Hyun Jung, Joon-Won Kang, Soo-Jin Kang, Jihoon Kweon, June-Goo Lee, Jung-Min Ahn, Duk-Woo Park et al. "Impact of coronary calcium score and lesion characteristics on the diagnostic performance of machine-learning-based computed tomography-derived fractional flow reserve". European Heart Journal - Cardiovascular Imaging 22, n.º 9 (11 de abril de 2021): 998–1006. http://dx.doi.org/10.1093/ehjci/jeab062.
Texto completoBerlet, Maximilian, Jonas Fuchtmann, Lukas Bernhard, Alissa Jell, Marie-Christin Weber, Philipp Alexander Neumann, Helmut Friess, Michael Kranzfelder, Hubertus Feussner y Dirk Wilhelm. "Laparoscopic Cholecystectomy – A Proper Model Surgery for AI based Prediction of Adverse Events?" Current Directions in Biomedical Engineering 8, n.º 1 (1 de julio de 2022): 5–8. http://dx.doi.org/10.1515/cdbme-2022-0002.
Texto completoJian, Anne, Kevin Jang, Maurizio Manuguerra, Sidong Liu, John Magnussen y Antonio Di Ieva. "Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis". Neurosurgery 89, n.º 1 (7 de abril de 2021): 31–44. http://dx.doi.org/10.1093/neuros/nyab103.
Texto completoChen, Fangyue, Piyawat Kantagowit, Tanawin Nopsopon, Arisa Chuklin y Krit Pongpirul. "Prediction and diagnosis of chronic kidney disease development and progression using machine-learning: Protocol for a systematic review and meta-analysis of reporting standards and model performance". PLOS ONE 18, n.º 2 (23 de febrero de 2023): e0278729. http://dx.doi.org/10.1371/journal.pone.0278729.
Texto completoAkella, Aravind y Sudheer Akella. "Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution". Future Science OA 7, n.º 6 (julio de 2021): FSO698. http://dx.doi.org/10.2144/fsoa-2020-0206.
Texto completoXia, Shujie, Jia Zhang, Guodong Du, Shaozi Li, Chi Teng Vong, Zhaoyang Yang, Jiliang Xin, Long Zhu, Bizhen Gao y Candong Li. "A Microcosmic Syndrome Differentiation Model for Metabolic Syndrome with Multilabel Learning". Evidence-Based Complementary and Alternative Medicine 2020 (26 de noviembre de 2020): 1–10. http://dx.doi.org/10.1155/2020/9081641.
Texto completoBusko, Ekaterina, Anastasiya Goncharova, Nadezhda Rozhkova, Vladislav Semiglazov, Alena Shishova, Elena Zhiltsova, Grigory Zinovev, Kseniya Beloborodova y Petr Krivorotko. "Model for making diagnostic decisions in multiparametric ultrasound of breast lesions". Problems in oncology 66, n.º 6 (30 de diciembre de 2020): 653–58. http://dx.doi.org/10.37469/0507-3758-2020-66-6-653-658.
Texto completoAgibetov, Asan, Benjamin Seirer, Theresa-Marie Dachs, Matthias Koschutnik, Daniel Dalos, René Rettl, Franz Duca et al. "Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study". Journal of Clinical Medicine 9, n.º 5 (3 de mayo de 2020): 1334. http://dx.doi.org/10.3390/jcm9051334.
Texto completoFriera, Alfonsa, Pilar Artieda, Paloma Caballero, Pilar Moliní, Marta Morales, Carmen Suárez y Nuria Ruiz-Giménez. "Rapid D-dimer test combined a clinical model for deep vein thrombosis". Thrombosis and Haemostasis 91, n.º 06 (2004): 1237–46. http://dx.doi.org/10.1160/th03-02-0080.
Texto completoBäuerlein, Carina A., Simone S. Riedel, Brede Christian, Ana-Laura Jordán Garrote, Agnes Birner, Carolin Kiesel, Miriam Ritz et al. "Definition of a Diagnostic Window Prior to the Onset of Clinically Apparent Acute Graft-Versus-Host Disease." Blood 116, n.º 21 (19 de noviembre de 2010): 3746. http://dx.doi.org/10.1182/blood.v116.21.3746.3746.
Texto completoYusuf, Mohamed, Ignacio Atal, Jacques Li, Philip Smith, Philippe Ravaud, Martin Fergie, Michael Callaghan y James Selfe. "Reporting quality of studies using machine learning models for medical diagnosis: a systematic review". BMJ Open 10, n.º 3 (marzo de 2020): e034568. http://dx.doi.org/10.1136/bmjopen-2019-034568.
Texto completoAndaur Navarro, Constanza L., Johanna A. A. G. Damen, Toshihiko Takada, Steven W. J. Nijman, Paula Dhiman, Jie Ma, Gary S. Collins et al. "Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques". BMJ Open 10, n.º 11 (noviembre de 2020): e038832. http://dx.doi.org/10.1136/bmjopen-2020-038832.
Texto completoJi, Jin, Xi Chen, Yalong Xu, Zhi Cao, Huan Xu, Chen kong, Fubo Wang y Yinghao Sun. "Prostate Cancer Diagnosis Using Urine Sediment Analysis-Based α-Methylacyl-CoA Racemase Score: A Single-Center Experience". Cancer Control 26, n.º 1 (1 de enero de 2019): 107327481988769. http://dx.doi.org/10.1177/1073274819887697.
Texto completoAlfian, Ganjar, Muhammad Syafrudin, Imam Fahrurrozi, Norma Latif Fitriyani, Fransiskus Tatas Dwi Atmaji, Tri Widodo, Nurul Bahiyah, Filip Benes y Jongtae Rhee. "Predicting Breast Cancer from Risk Factors Using SVM and Extra-Trees-Based Feature Selection Method". Computers 11, n.º 9 (12 de septiembre de 2022): 136. http://dx.doi.org/10.3390/computers11090136.
Texto completoVarley-Campbell, Jo, Rubén Mújica-Mota, Helen Coelho, Neel Ocean, Max Barnish, David Packman, Sophie Dodman et al. "Three biomarker tests to help diagnose preterm labour: a systematic review and economic evaluation". Health Technology Assessment 23, n.º 13 (marzo de 2019): 1–226. http://dx.doi.org/10.3310/hta23130.
Texto completoEckardt, Jan-Niklas, Martin Bornhäuser, Karsten Wendt y Jan Moritz Middeke. "Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects". Blood Advances 4, n.º 23 (8 de diciembre de 2020): 6077–85. http://dx.doi.org/10.1182/bloodadvances.2020002997.
Texto completoHsieh, Hsien-Yi, Jingyu Ning, Yi-Ru Chen, Hsun-Chung Wu, Hua Li Chen, Chien-Ming Wu y Ray-Kuang Lee. "Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography". Symmetry 14, n.º 5 (25 de abril de 2022): 874. http://dx.doi.org/10.3390/sym14050874.
Texto completoHsieh, Hsien-Yi, Jingyu Ning, Yi-Ru Chen, Hsun-Chung Wu, Hua Li Chen, Chien-Ming Wu y Ray-Kuang Lee. "Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography". Symmetry 14, n.º 5 (25 de abril de 2022): 874. http://dx.doi.org/10.3390/sym14050874.
Texto completoDruzhilov, M. A., T. Yu Kuznetsova, D. V. Gavrilov y A. V. Gusev. "Verification of subclinical carotid atherosclerosis as part of risk stratification in overweight and obesity: the role of machine learning in the development of a diagnostic algorithm". Cardiovascular Therapy and Prevention 21, n.º 7 (6 de julio de 2022): 3222. http://dx.doi.org/10.15829/1728-8800-2022-3222.
Texto completoTakkar, Sakshi, Aman Singh y Babita Pandey. "Application of Machine Learning Algorithms to a Well Defined Clinical Problem: Liver Disease". International Journal of E-Health and Medical Communications 8, n.º 4 (octubre de 2017): 38–60. http://dx.doi.org/10.4018/ijehmc.2017100103.
Texto completoColakoglu, Bulent, Deniz Alis y Mert Yergin. "Diagnostic Value of Machine Learning-Based Quantitative Texture Analysis in Differentiating Benign and Malignant Thyroid Nodules". Journal of Oncology 2019 (31 de octubre de 2019): 1–7. http://dx.doi.org/10.1155/2019/6328329.
Texto completoChen, Wei-Hsin, Yuan-Hong Jiang y Hann-Chorng Kuo. "Urinary Oxidative Stress Biomarkers in the Diagnosis of Detrusor Overactivity in Female Patients with Stress Urinary Incontinence". Biomedicines 11, n.º 2 (26 de enero de 2023): 357. http://dx.doi.org/10.3390/biomedicines11020357.
Texto completoMehra, Saanvi, Binoy Shah, Ankur Sethi, Ratna Puri y Somashekhar Nimbalkar. "Down Syndrome Detection Through Graphical Analysis of Facial Dysmorphic Features in Newborn Children With Ethnicity/Racial Slicing: An AI/ML-Based Approach". Journal of Neonatology 36, n.º 3 (septiembre de 2022): 199–205. http://dx.doi.org/10.1177/09732179221113677.
Texto completoRadzi, Siti Fairuz Mat, Muhammad Khalis Abdul Karim, M. Iqbal Saripan, Mohd Amiruddin Abd Rahman, Iza Nurzawani Che Isa y Mohammad Johari Ibahim. "Hyperparameter Tuning and Pipeline Optimization via Grid Search Method and Tree-Based AutoML in Breast Cancer Prediction". Journal of Personalized Medicine 11, n.º 10 (29 de septiembre de 2021): 978. http://dx.doi.org/10.3390/jpm11100978.
Texto completoSkielka, Udo Tersiano, Jacyra Soares y Amauri Pereira de Oliveira. "Study of the equatorial Atlantic Ocean mixing layer using a one-dimensional turbulence model". Brazilian Journal of Oceanography 58, spe3 (junio de 2010): 57–69. http://dx.doi.org/10.1590/s1679-87592010000700008.
Texto completoSavalia, Meshwa Rameshbhai y Jaiprakash Vinodkumar Verma. "Classifying Malignant and Benign Tumors of Breast Cancer". International Journal of Reliable and Quality E-Healthcare 12, n.º 1 (24 de febrero de 2023): 1–19. http://dx.doi.org/10.4018/ijrqeh.318483.
Texto completoJeon, Min Ji, Hojoon Choi, Eun Sang Yu, Ka-Won Kang, Byung-Hyun Lee, Dae Sik Kim, Yong Park et al. "Immature Platelet Fraction Based Diagnostic Predictive Model for Immune Thrombocytopenic Purpura". Blood 132, Supplement 1 (29 de noviembre de 2018): 1149. http://dx.doi.org/10.1182/blood-2018-99-117754.
Texto completoKim, Harin, Sung Woo Joo, Yeon Ho Joo y Jungsun Lee. "S152. DIAGNOSTIC CLASSIFICATION OF SCHIZOPHRENIA USING 3D CONVOLUTIONAL NEURAL NETWORK WITH RESTING-STATE FUNCTIONAL MRI". Schizophrenia Bulletin 46, Supplement_1 (abril de 2020): S94. http://dx.doi.org/10.1093/schbul/sbaa031.218.
Texto completoGallardo, Diego I., Marcelo Bourguignon, Yolanda M. Gómez, Christian Caamaño-Carrillo y Osvaldo Venegas. "Parametric Quantile Regression Models for Fitting Double Bounded Response with Application to COVID-19 Mortality Rate Data". Mathematics 10, n.º 13 (27 de junio de 2022): 2249. http://dx.doi.org/10.3390/math10132249.
Texto completoPane, Katia, Mario Zanfardino, Anna Maria Grimaldi, Gustavo Baldassarre, Marco Salvatore, Mariarosaria Incoronato y Monica Franzese. "Discovering Common miRNA Signatures Underlying Female-Specific Cancers via a Machine Learning Approach Driven by the Cancer Hallmark ERBB". Biomedicines 10, n.º 6 (2 de junio de 2022): 1306. http://dx.doi.org/10.3390/biomedicines10061306.
Texto completoBustamante-Arias, Andres, Abbas Cheddad, Julio Cesar Jimenez-Perez y Alejandro Rodriguez-Garcia. "Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model". Photonics 8, n.º 4 (10 de abril de 2021): 118. http://dx.doi.org/10.3390/photonics8040118.
Texto completoHassan, Ch Anwar ul, Jawaid Iqbal, Rizwana Irfan, Saddam Hussain, Abeer D. Algarni, Syed Sabir Hussain Bukhari, Nazik Alturki y Syed Sajid Ullah. "Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers". Sensors 22, n.º 19 (23 de septiembre de 2022): 7227. http://dx.doi.org/10.3390/s22197227.
Texto completoDiprose, William K., Nicholas Buist, Ning Hua, Quentin Thurier, George Shand y Reece Robinson. "Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator". Journal of the American Medical Informatics Association 27, n.º 4 (27 de febrero de 2020): 592–600. http://dx.doi.org/10.1093/jamia/ocz229.
Texto completoArokiaraj, Mark Christopher. "Angioplasty with Stenting in Acute Coronary Syndromes with Very Low Contrast Volume Using 6F Diagnostic Catheters and Bench Testing of Catheters". Open Access Macedonian Journal of Medical Sciences 7, n.º 6 (29 de marzo de 2019): 1004–12. http://dx.doi.org/10.3889/oamjms.2019.238.
Texto completo