Artículos de revistas sobre el tema "Mitotic slippage"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Mitotic slippage".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Lee, Kyunghee, Alison E. Kenny y Conly L. Rieder. "Caspase activity is not required for the mitotic checkpoint or mitotic slippage in human cells". Molecular Biology of the Cell 22, n.º 14 (15 de julio de 2011): 2470–79. http://dx.doi.org/10.1091/mbc.e11-03-0228.
Texto completoBrito, Daniela A., Zhenye Yang y Conly L. Rieder. "Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied". Journal of Cell Biology 182, n.º 4 (18 de agosto de 2008): 623–29. http://dx.doi.org/10.1083/jcb.200805072.
Texto completoCheng, Bing y Karen Crasta. "Consequences of mitotic slippage for antimicrotubule drug therapy". Endocrine-Related Cancer 24, n.º 9 (septiembre de 2017): T97—T106. http://dx.doi.org/10.1530/erc-17-0147.
Texto completoAndreassen, P. R. y R. L. Margolis. "Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells." Journal of Cell Biology 127, n.º 3 (1 de noviembre de 1994): 789–802. http://dx.doi.org/10.1083/jcb.127.3.789.
Texto completoBrandeis, Michael. "Slip slidin’ away of mitosis with CRL2Zyg11". Journal of Cell Biology 215, n.º 2 (17 de octubre de 2016): 143–45. http://dx.doi.org/10.1083/jcb.201609086.
Texto completoBalachandran, Riju S., Cassandra S. Heighington, Natalia G. Starostina, James W. Anderson, David L. Owen, Srividya Vasudevan y Edward T. Kipreos. "The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage". Journal of Cell Biology 215, n.º 2 (17 de octubre de 2016): 151–66. http://dx.doi.org/10.1083/jcb.201601083.
Texto completoStevens, F. E., H. Beamish, R. Warrener y B. Gabrielli. "Histone deacetylase inhibitors induce mitotic slippage". Oncogene 27, n.º 10 (10 de septiembre de 2007): 1345–54. http://dx.doi.org/10.1038/sj.onc.1210779.
Texto completoSloss, O., C. Topham y S. Taylor. "Mcl-1 dynamics influence mitotic slippage and death in mitosis". European Journal of Cancer 61 (julio de 2016): S100—S101. http://dx.doi.org/10.1016/s0959-8049(16)61352-7.
Texto completoSloss, Olivia, Caroline Topham, Maria Diez y Stephen Taylor. "Mcl-1 dynamics influence mitotic slippage and death in mitosis". Oncotarget 7, n.º 5 (12 de enero de 2016): 5176–92. http://dx.doi.org/10.18632/oncotarget.6894.
Texto completoBalachandran, Riju S. y Edward T. Kipreos. "Addressing a weakness of anticancer therapy with mitosis inhibitors: Mitotic slippage". Molecular & Cellular Oncology 4, n.º 2 (5 de enero de 2017): e1277293. http://dx.doi.org/10.1080/23723556.2016.1277293.
Texto completoMantel, Charlie, Sara Rhorabough, Ying Guo, Man-Ryul Lee, Myung-Kwan Han, Kye-Seong Kim y Hal E. Broxmeyer. "Molecular Mechanisms of Spindle Checkpoint-Apoptosis Linkage and Karyotypic Stability in Stem Cells." Blood 110, n.º 11 (16 de noviembre de 2007): 3361. http://dx.doi.org/10.1182/blood.v110.11.3361.3361.
Texto completoScott, Stacey J., Xiaodun Li, Sriganesh Jammula, Ginny Devonshire, Catherine Lindon, Rebecca C. Fitzgerald y Pier Paolo D’Avino. "Evidence that polyploidy in esophageal adenocarcinoma originates from mitotic slippage caused by defective chromosome attachments". Cell Death & Differentiation 28, n.º 7 (1 de marzo de 2021): 2179–93. http://dx.doi.org/10.1038/s41418-021-00745-8.
Texto completoSchuyler, Scott C. y Hsin-Yu Chen. "Using Budding Yeast to Identify Molecules That Block Cancer Cell ‘Mitotic Slippage’ Only in the Presence of Mitotic Poisons". International Journal of Molecular Sciences 22, n.º 15 (26 de julio de 2021): 7985. http://dx.doi.org/10.3390/ijms22157985.
Texto completoOrth, James D., Alexander Loewer, Galit Lahav y Timothy J. Mitchison. "Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction". Molecular Biology of the Cell 23, n.º 4 (15 de febrero de 2012): 567–76. http://dx.doi.org/10.1091/mbc.e11-09-0781.
Texto completoSalmina, Kristine, Agnieszka Bojko, Inna Inashkina, Karolina Staniak, Magdalena Dudkowska, Petar Podlesniy, Felikss Rumnieks et al. "“Mitotic Slippage” and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres". International Journal of Molecular Sciences 21, n.º 8 (16 de abril de 2020): 2779. http://dx.doi.org/10.3390/ijms21082779.
Texto completoRossio, Valentina, Elena Galati, Matteo Ferrari, Achille Pellicioli, Takashi Sutani, Katsuhiko Shirahige, Giovanna Lucchini y Simonetta Piatti. "The RSC chromatin-remodeling complex influences mitotic exit and adaptation to the spindle assembly checkpoint by controlling the Cdc14 phosphatase". Journal of Cell Biology 191, n.º 5 (22 de noviembre de 2010): 981–97. http://dx.doi.org/10.1083/jcb.201007025.
Texto completoRossio, Valentina, Elena Galati y Simonetta Piatti. "Adapt or die: how eukaryotic cells respond to prolonged activation of the spindle assembly checkpoint". Biochemical Society Transactions 38, n.º 6 (24 de noviembre de 2010): 1645–49. http://dx.doi.org/10.1042/bst0381645.
Texto completoSinha, Debottam, Pascal H. G. Duijf y Kum Kum Khanna. "Mitotic slippage: an old tale with a new twist". Cell Cycle 18, n.º 1 (2 de enero de 2019): 7–15. http://dx.doi.org/10.1080/15384101.2018.1559557.
Texto completoRestall, Ian J., Doris A. E. Parolin, Manijeh Daneshmand, Jennifer E. L. Hanson, Manon A. Simard, Megan E. Fitzpatrick, Ritesh Kumar, Sylvie J. Lavictoire y Ian A. J. Lorimer. "PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma". Cell Cycle 14, n.º 18 (17 de septiembre de 2015): 2938–48. http://dx.doi.org/10.1080/15384101.2015.1071744.
Texto completoJakhar, Rekha, Monique N. H. Luijten, Alex X. F. Wong, Bing Cheng, Ke Guo, Suat P. Neo, Bijin Au et al. "Autophagy Governs Protumorigenic Effects of Mitotic Slippage–induced Senescence". Molecular Cancer Research 16, n.º 11 (23 de julio de 2018): 1625–40. http://dx.doi.org/10.1158/1541-7786.mcr-18-0024.
Texto completoRuggiero, Antonella, Yuki Katou, Katsuhiko Shirahige, Martial Séveno y Simonetta Piatti. "The Phosphatase PP1 Promotes Mitotic Slippage through Mad3 Dephosphorylation". Current Biology 30, n.º 2 (enero de 2020): 335–43. http://dx.doi.org/10.1016/j.cub.2019.11.054.
Texto completoLi, Xue, Yue Feng, Meifang Yan, Xiaomeng Tu, Bin Xie, Fangfang Ni, Chunsheng Qu y Jie-Guang Chen. "Inhibition of Autism-Related Crm1 Disrupts Mitosis and Induces Apoptosis of the Cortical Neural Progenitors". Cerebral Cortex 30, n.º 7 (1 de febrero de 2020): 3960–76. http://dx.doi.org/10.1093/cercor/bhaa011.
Texto completoTao, Weikang, Victoria J. South, Ronald E. Diehl, Joseph P. Davide, Laura Sepp-Lorenzino, Mark E. Fraley, Kenneth L. Arrington y Robert B. Lobell. "An Inhibitor of the Kinesin Spindle Protein Activates the Intrinsic Apoptotic Pathway Independently of p53 and De Novo Protein Synthesis". Molecular and Cellular Biology 27, n.º 2 (13 de noviembre de 2006): 689–98. http://dx.doi.org/10.1128/mcb.01505-06.
Texto completoOhashi, Akihiro. "Different cell fates after mitotic slippage: From aneuploidy to polyploidy". Molecular & Cellular Oncology 3, n.º 2 (6 de octubre de 2015): e1088503. http://dx.doi.org/10.1080/23723556.2015.1088503.
Texto completoLee, Christine, Kristine J. Fernandez, Sarah Alexandrou, C. Marcelo Sergio, Niantao Deng, Samuel Rogers, Andrew Burgess y C. Elizabeth Caldon. "Cyclin E2 Promotes Whole Genome Doubling in Breast Cancer". Cancers 12, n.º 8 (13 de agosto de 2020): 2268. http://dx.doi.org/10.3390/cancers12082268.
Texto completoVainshelbaum, Ninel Miriam, Kristine Salmina, Bogdan I. Gerashchenko, Marija Lazovska, Pawel Zayakin, Mark Steven Cragg, Dace Pjanova y Jekaterina Erenpreisa. "Role of the Circadian Clock “Death-Loop” in the DNA Damage Response Underpinning Cancer Treatment Resistance". Cells 11, n.º 5 (3 de marzo de 2022): 880. http://dx.doi.org/10.3390/cells11050880.
Texto completoLee, Jinho, Jin Ah Kim, Robert L. Margolis y Rati Fotedar. "Substrate degradation by the anaphase promoting complex occurs during mitotic slippage". Cell Cycle 9, n.º 9 (mayo de 2010): 1792–801. http://dx.doi.org/10.4161/cc.9.9.11519.
Texto completoWalen, Kirsten H. "Mitotic Slippage Process Concealed Cancer-Sought Chromosome Instability Mechanism (S-CIN)". Journal of Cancer Therapy 08, n.º 06 (2017): 608–23. http://dx.doi.org/10.4236/jct.2017.86052.
Texto completoToda, Kazuhiro, Kayoko Naito, Satoru Mase, Masaru Ueno, Masahiro Uritani, Ayumu Yamamoto y Takashi Ushimaru. "APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage". Cell Division 7, n.º 1 (2012): 4. http://dx.doi.org/10.1186/1747-1028-7-4.
Texto completoArchetti, Marco. "Polyploidy as an Adaptation against Loss of Heterozygosity in Cancer". International Journal of Molecular Sciences 23, n.º 15 (1 de agosto de 2022): 8528. http://dx.doi.org/10.3390/ijms23158528.
Texto completoChen, Liu, Huang, Li, Zhao, Feng y Zhao. "Heat Stress-Induced Multiple Multipolar Divisions of Human Cancer Cells". Cells 8, n.º 8 (13 de agosto de 2019): 888. http://dx.doi.org/10.3390/cells8080888.
Texto completoZhu, Yanting, Yuan Zhou y Jue Shi. "Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle". Cell Cycle 13, n.º 11 (2 de abril de 2014): 1756–64. http://dx.doi.org/10.4161/cc.28672.
Texto completoRiffell, Jenna L., Reiner U. Jänicke y Michel Roberge. "Caspase-3–Dependent Mitotic Checkpoint Inactivation by the Small-Molecule Inducers of Mitotic Slippage SU6656 and Geraldol". Molecular Cancer Therapeutics 10, n.º 5 (25 de marzo de 2011): 839–49. http://dx.doi.org/10.1158/1535-7163.mct-10-0909.
Texto completoBecker, Sven, Klaus Strebhardt, Ranadip Mandal y Mourad Sanhaji. "Boosting the apoptotic response of high-grade serous ovarian cancers with CCNE1-amplification to paclitaxel by targeting APC/C and the pro-survival protein MCL-1." Journal of Clinical Oncology 38, n.º 15_suppl (20 de mayo de 2020): e18065-e18065. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e18065.
Texto completoHuang, Shiying, Sekar Karthik, Qi Lin, YuChen Du, Ching C. Lau, Adesina Adekunle, Jack M. F. Su et al. "EMBR-23. KIF11 DEPENDENCY ON P53 MUTATIONAL STATUS IN MEDULLOBLASTOMA". Neuro-Oncology 23, Supplement_1 (1 de junio de 2021): i10—i11. http://dx.doi.org/10.1093/neuonc/noab090.041.
Texto completoVitovcova, Barbora, Veronika Skarkova, Kamil Rudolf y Emil Rudolf. "Biology of Glioblastoma Multiforme—Exploration of Mitotic Catastrophe as a Potential Treatment Modality". International Journal of Molecular Sciences 21, n.º 15 (27 de julio de 2020): 5324. http://dx.doi.org/10.3390/ijms21155324.
Texto completoYamada, Chihiro, Aya Morooka, Seira Miyazaki, Masayoshi Nagai, Satoru Mase, Kenji Iemura, Most Naoshia Tasnin et al. "TORC1 inactivation promotes APC/C-dependent mitotic slippage in yeast and human cells". iScience 25, n.º 2 (febrero de 2022): 103675. http://dx.doi.org/10.1016/j.isci.2021.103675.
Texto completoXu, Fengfeng L., Youssef Rbaibi, Kirill Kiselyov, John S. Lazo, Peter Wipf y William S. Saunders. "Mitotic slippage in non-cancer cells induced by a microtubule disruptor, disorazole C1". BMC Chemical Biology 10, n.º 1 (2010): 1. http://dx.doi.org/10.1186/1472-6769-10-1.
Texto completoRaab, Monika, Andrea Krämer, Stephanie Hehlgans, Mourad Sanhaji, Elisabeth Kurunci-Csacsko, Christina Dötsch, Gesine Bug et al. "Mitotic arrest and slippage induced by pharmacological inhibition of Polo-like kinase 1". Molecular Oncology 9, n.º 1 (11 de agosto de 2014): 140–54. http://dx.doi.org/10.1016/j.molonc.2014.07.020.
Texto completoDai, Wei, Qi Wang, Tongyi Liu, Malisetty Swamy, Yuqiang Fang, Suqing Xie, Radma Mahmood, Yang-Ming Yang, Ming Xu y Chinthalapally V. Rao. "Slippage of Mitotic Arrest and Enhanced Tumor Development in Mice with BubR1 Haploinsufficiency". Cancer Research 64, n.º 2 (15 de enero de 2004): 440–45. http://dx.doi.org/10.1158/0008-5472.can-03-3119.
Texto completoYasuhira, Shinji, Masahiko Shibazaki, Masao Nishiya y Chihaya Maesawa. "Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53". Cell Cycle 15, n.º 23 (7 de noviembre de 2016): 3268–77. http://dx.doi.org/10.1080/15384101.2016.1242537.
Texto completoDownes, C. S., C. Z. Bachrati, S. J. Devlin, M. Tommasino, T. J. Cutts, J. V. Watson, I. Rasko y R. T. Johnson. "Mammalian S-phase checkpoint integrity is dependent on transformation status and purine deoxyribonucleosides". Journal of Cell Science 113, n.º 6 (15 de marzo de 2000): 1089–96. http://dx.doi.org/10.1242/jcs.113.6.1089.
Texto completoMarxer, M., H. T. Ma, W. Y. Man y R. Y. C. Poon. "p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases". Oncogene 33, n.º 27 (19 de agosto de 2013): 3550–60. http://dx.doi.org/10.1038/onc.2013.325.
Texto completoLok, Tsun Ming, Yang Wang, Wendy Kaichun Xu, Siwei Xie, Hoi Tang Ma y Randy Y. C. Poon. "Mitotic slippage is determined by p31comet and the weakening of the spindle-assembly checkpoint". Oncogene 39, n.º 13 (6 de febrero de 2020): 2819–34. http://dx.doi.org/10.1038/s41388-020-1187-6.
Texto completoRiffell, J. L. y M. Roberge. "731 Chemical induction of mitotic slippage by proteolytic degradation of spindle assembly checkpoint proteins". European Journal of Cancer Supplements 8, n.º 5 (junio de 2010): 184–85. http://dx.doi.org/10.1016/s1359-6349(10)71528-7.
Texto completoXiao, J., P. Qiu, X. Lai, P. He, Y. Wu, B. Du y Y. Tan. "Cyclin-dependent kinase 1 inhibitor RO3306 promotes mitotic slippage in paclitaxel-treated HepG2 cells". Neoplasma 61, n.º 01 (2014): 41–47. http://dx.doi.org/10.4149/neo_2014_007.
Texto completoSchnerch, Dominik, Julia Felthaus, Monika Engelhardt y Ralph Wäsch. "A Rationale to Enhance the Response to Antimitotic Therapy in Acute Myeloid Leukemia". Blood 120, n.º 21 (16 de noviembre de 2012): 1332. http://dx.doi.org/10.1182/blood.v120.21.1332.1332.
Texto completoNovais, Pedro, Patrícia M. A. Silva, Isabel Amorim y Hassan Bousbaa. "Second-Generation Antimitotics in Cancer Clinical Trials". Pharmaceutics 13, n.º 7 (2 de julio de 2021): 1011. http://dx.doi.org/10.3390/pharmaceutics13071011.
Texto completoTao, Weikang, Victoria J. South, Yun Zhang, Joseph P. Davide, Linda Farrell, Nancy E. Kohl, Laura Sepp-Lorenzino y Robert B. Lobell. "Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage". Cancer Cell 8, n.º 1 (julio de 2005): 49–59. http://dx.doi.org/10.1016/j.ccr.2005.06.003.
Texto completoLiess, Anna K. L., Alena Kucerova, Kristian Schweimer, Dörte Schlesinger, Olexandr Dybkov, Henning Urlaub, Jörg Mansfeld y Sonja Lorenz. "Dimerization regulates the human APC/C-associated ubiquitin-conjugating enzyme UBE2S". Science Signaling 13, n.º 654 (20 de octubre de 2020): eaba8208. http://dx.doi.org/10.1126/scisignal.aba8208.
Texto completo