Literatura académica sobre el tema "Mitotic errors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mitotic errors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mitotic errors"
Ford, Judith Helen y Anthony Thomas Correll. "Chromosome errors at mitotic anaphase". Genome 35, n.º 4 (1 de agosto de 1992): 702–5. http://dx.doi.org/10.1139/g92-107.
Texto completoSensi, Alberto y Nicola Ricci. "Mitotic errors in trisomy 21". Nature Genetics 5, n.º 3 (noviembre de 1993): 215. http://dx.doi.org/10.1038/ng1193-215a.
Texto completoHa, Geun-Hyoung y Eun-Kyoung Yim Breuer. "Mitotic Kinases and p53 Signaling". Biochemistry Research International 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/195903.
Texto completoElsing, Alexandra N., Camilla Aspelin, Johanna K. Björk, Heidi A. Bergman, Samu V. Himanen, Marko J. Kallio, Pia Roos-Mattjus y Lea Sistonen. "Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival". Journal of Cell Biology 206, n.º 6 (8 de septiembre de 2014): 735–49. http://dx.doi.org/10.1083/jcb.201402002.
Texto completoGreen, Rebecca A., Roy Wollman y Kenneth B. Kaplan. "APC and EB1 Function Together in Mitosis to Regulate Spindle Dynamics and Chromosome Alignment". Molecular Biology of the Cell 16, n.º 10 (octubre de 2005): 4609–22. http://dx.doi.org/10.1091/mbc.e05-03-0259.
Texto completoColicino, Erica G., Alice M. Garrastegui, Judy Freshour, Peu Santra, Dawn E. Post, Leszek Kotula y Heidi Hehnly. "Gravin regulates centrosome function through PLK1". Molecular Biology of the Cell 29, n.º 5 (marzo de 2018): 532–41. http://dx.doi.org/10.1091/mbc.e17-08-0524.
Texto completoHut, Henderika M. J., Harm H. Kampinga y Ody C. M. Sibon. "Hsp70 Protects Mitotic Cells against Heat-induced Centrosome Damage and Division Abnormalities". Molecular Biology of the Cell 16, n.º 8 (agosto de 2005): 3776–85. http://dx.doi.org/10.1091/mbc.e05-01-0038.
Texto completoCarvalhal, Sara, Alexandra Tavares, Mariana B. Santos, Mihailo Mirkovic y Raquel A. Oliveira. "A quantitative analysis of cohesin decay in mitotic fidelity". Journal of Cell Biology 217, n.º 10 (12 de julio de 2018): 3343–53. http://dx.doi.org/10.1083/jcb.201801111.
Texto completoMeyer, John S., Eric Cosatto y Hans Peter Graf. "Mitotic Index of Invasive Breast Carcinoma". Archives of Pathology & Laboratory Medicine 133, n.º 11 (1 de noviembre de 2009): 1826–33. http://dx.doi.org/10.5858/133.11.1826.
Texto completoKrem, Maxwell M. y Marshall S. Horwitz. "Mitotic errors, aneuploidy and micronuclei in Hodgkin lymphoma pathogenesis". Communicative & Integrative Biology 6, n.º 3 (13 de mayo de 2013): e23544. http://dx.doi.org/10.4161/cib.23544.
Texto completoTesis sobre el tema "Mitotic errors"
Ivana, Barbaric, W. Andrews Peter, J. A. Halliwell, T. J. R. Frith, O. Laing, C. J. Price, O. J. Bower et al. "Nucleosides Rescue Replication-Mediated Genome Instability of Human Pluripotent Stem Cells". 2020. http://hdl.handle.net/10454/18013.
Texto completoHuman pluripotent stem cells (PSCs) are subject to the appearance of recurrent genetic variants on prolonged culture. We have now found that, compared with isogenic differentiated cells, PSCs exhibit evidence of considerably more DNA damage during the S phase of the cell cycle, apparently as a consequence of DNA replication stress marked by slower progression of DNA replication, activation of latent origins of replication, and collapse of replication forks. As in many cancers, which, like PSCs, exhibit a shortened G1 phase and DNA replication stress, the resulting DNA damage may underlie the higher incidence of abnormal and abortive mitoses in PSCs, resulting in chromosomal non-dysjunction or cell death. However, we have found that the extent of DNA replication stress, DNA damage, and consequent aberrant mitoses can be substantially reduced by culturing PSCs in the presence of exogenous nucleosides, resulting in improved survival, clonogenicity, and population growth.
Parcesepe, Pietro. "The link between centrosome defects and cancer unveiled by CROCC deficiency in rhabdoid colorectal cancer". Doctoral thesis, 2017. http://hdl.handle.net/11562/961033.
Texto completoVázquez, de Castro Diez Cayetana. "Causes and consequences of chromosome segregation errors in the mouse preimplantation embryo". Thesis, 2018. http://hdl.handle.net/1866/21198.
Texto completoCell division is a universal biological process necessary for reproduction, development, cell survival and the maintenance and repair of tissues. Accurate chromosome segregation during mitosis is essential to ensure replicated chromosomes are partitioned equally into daughter cells. Errors in chromosome segregation often result in cells with abnormal numbers of chromosomes, a condition termed aneuploidy, which is associated with impaired cellular health, tumorigenesis, congenital defects and infertility. Counterintuitively, preimplantation embryos from many mammalian species, including humans, often consist of a mixture euploid and aneuploid cells. Such mosaic aneuploidy in embryos is inexorably caused by errors in chromosome segregation during mitotic divisions following fertilization and has been associated with reduced developmental potential in fertility treatments. However, ever since its discovery 25 years ago, how and why mosaic aneuploidy arises in the preimplantation embryo has remained elusive. To explore the causes and consequences of embryonic chromosome segregation errors, advanced imaging approaches were employed in the mouse preimplantation embryo. Live cell imaging analysis of chromosome segregation dynamics identified lagging anaphase chromosomes as the most prevalent form of chromosome mis-segregation in embryos. Lagging chromosomes frequently result in the encapsulation of single chromosomes into micronuclei, which occur in embryos in vitro and in vivo. Further live imaging and immunofluorescence experiments revealed chromosomes within micronuclei are subject to extensive DNA damage and centromeric identity loss, failing to assemble functional kinetochores and being recurrently mis-segregated during ensuing cell divisions in preimplantation development. To uncover the underlying causes for the increased propensity for chromosome mis-segregation in embryos, live imaging and loss-of-function approaches were used to examine the effectiveness of the mitotic safeguard mechanism, the Spindle Assembly Checkpoint (SAC). These studies demonstrated that the SAC normally functions to prevent segregation errors during preimplantation development but SAC signaling at misaligned chromosomes fails to delay anaphase. Moreover, SAC failure in embryos is most evident during mid-preimplantation development, independent of cell size. Partial inhibition of SAC target, the Anaphase Promoting Complex (APC/C), extended mitosis and reduced chromosome segregation errors in embryos. These studies have uncovered deficient SAC function during preimplantation development as a major cause for the high incidence of lagging chromosomes in embryos, which result in repeated mis-segregation of single chromosomes in a manner that necessarily causes mosaic aneuploidy. Additionally, this work provides proof-of-principle demonstration that pharmacological modulation of SAC-APC/C signalling can avert chromosome segregation errors in the early embryo. Altogether, these findings present new insights into the causes and nature of chromosome mis-segregation in embryos, providing novel mechanistic explanations for the occurrence of mosaicism that will have substantial implications for the detection and potential therapeutic prevention of aneuploidy in preimplantation embryos.
Libros sobre el tema "Mitotic errors"
Sarajevo, Institut za istoriju, ed. Historijski mitovi na Balkanu: Zbornik radova. Sarajevo: Institut za istoriju, 2003.
Buscar texto completoCapítulos de libros sobre el tema "Mitotic errors"
Nicholson, Joshua M. y Daniela Cimini. "How Mitotic Errors Contribute to Karyotypic Diversity in Cancer". En Advances in Cancer Research, 43–75. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-387688-1.00003-x.
Texto completoPoornima, Subhadra, Saranya Vadrevu y Imran Ali Khan. "Background, Diagnosis, Types, Management/Prevention and Implications of Chromosomal Abnormalities". En Down Syndrome and Other Chromosome Abnormalities. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99812.
Texto completo"The Endogenous Manipulation of DNA Within the Cell". En Animal Genetics for Chemists, 61–95. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/bk9781782627609-00061.
Texto completoCarr, Simon M. y Nicholas B. La Thangue. "Cell cycle control". En Oxford Textbook of Oncology, 31–41. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199656103.003.0004.
Texto completoActas de conferencias sobre el tema "Mitotic errors"
El-Labban, A., C. Arteta, A. Zisserman, A. W. Bird y A. Hyman. "Mitotic phase based detection of chromosome segregation errors in embryonic stem cells". En 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556619.
Texto completoHarder, N., F. Mora-Bermudez, W. J. Godinez, J. Ellenberg, R. Eils y K. Rohr. "DETERMINATION OF MITOTIC DELAYS IN 3D FLUORESCENCE MICROSCOPY IMAGES OF HUMAN CELLS USING AN ERROR-CORRECTING FINITE STATE MACHINE". En 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2007. http://dx.doi.org/10.1109/isbi.2007.357034.
Texto completo