Tesis sobre el tema "Mirror symmetry"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Mirror symmetry".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Branco, Lucas Castello. "Higgs bundles, Lagrangians and mirror symmetry". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:612325bd-6a7f-4d74-a85c-426b73ff7a14.
Texto completoMertens, Adrian. "Mirror Symmetry in the presence of Branes". Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135464.
Texto completoGu, Wei. "Gauged Linear Sigma Model and Mirror Symmetry". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90892.
Texto completoDoctor of Philosophy
In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
Perevalov, Eugene V. "Type II/heterotic duality and mirror symmetry /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Texto completoRossi, Paolo. "Symplectic Topology, Mirror Symmetry and Integrable Systems". Doctoral thesis, SISSA, 2008. http://hdl.handle.net/11577/3288900.
Texto completoKrefl, Daniel. "Real Mirror Symmetry and The Real Topological String". Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.
Texto completoWilliams, Matthew Michael. "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.
Texto completoUeda, Kazushi. "Homological mirror symmetry for toric del Pezzo surfaces". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Texto completo0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Kadir, Shabnam Nargis. "The arithmetic of Calabi-Yau manifolds and mirror symmetry". Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403756.
Texto completoPetracci, Andrea. "On Mirror Symmetry for Fano varieties and for singularities". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Texto completoBott, Christopher James. "Mirror Symmetry for K3 Surfaces with Non-symplectic Automorphism". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7456.
Texto completoMatessi, Diego. "Constructions of Calabi Yau metrics and of special Lagrangian submanifolds". Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246770.
Texto completoAlim, Murad. "Mirror Symmetry, Toric Branes and Topological String Amplitudes as Polynomials". Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-103416.
Texto completoHartmann, Heinrich [Verfasser]. "Mirror symmetry and stability conditions on K3 surfaces / Heinrich Hartmann". Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/1016152949/34.
Texto completoYang, Wenzhe. "The arithmetic geometry of mirror symmetry and the conifold transition". Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:e55a7b22-a268-4c57-9d98-c0547ecdcef9.
Texto completoPrince, Thomas. "Applications of mirror symmetry to the classification of Fano varieties". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43374.
Texto completoBorokhov, Vadim Aleksandrovich Kapustin Anton N. "Monopole operators and mirror symmetry in three-dimensional gauge theories /". Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-04062004-015855.
Texto completoSigrist, Norbert. "First-order design of mirror systems with no axial symmetry". Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284660.
Texto completoJohnson, Jared Drew. "An Algebra Isomorphism for the Landau-Ginzburg Mirror Symmetry Conjecture". BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2793.
Texto completoZhang, Xiangwen 1984. "Mean curvature flow for Lagrangian submanifolds with convex potentials". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111593.
Texto completoMukai, Daichi. "Mirror symmetry of nonabelian Landau-Ginzburg orbifolds with loop type potentials". Kyoto University, 2020. http://hdl.handle.net/2433/253068.
Texto completoPumperla, Max [Verfasser] y Bernd [Akademischer Betreuer] Siebert. "Unifying Constructions in Toric Mirror Symmetry / Max Pumperla. Betreuer: Bernd Siebert". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2012. http://d-nb.info/1026332966/34.
Texto completoBöhm, Janko [Verfasser] y Frank-Olaf [Akademischer Betreuer] Schreyer. "Mirror symmetry and tropical geometry / Janko Böhm. Betreuer: Frank-Olaf Schreyer". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2011. http://d-nb.info/1051094968/34.
Texto completoLu, Wenxuan. "Instanton correction, wall crossing and mirror symmetry of Hitchin's moduli spaces". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67809.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 205-210).
We study two instanton correction problems of Hitchin's moduli spaces along with their wall crossing formulas. The hyperkahler metric of a Hitchin's moduli space can be put into an instanton-corrected form according to physicists Gaiotto, Moore and Neitzke. The problem boils down to the construction of a set of special coordinates which can be constructed as Fock-Goncharov coordinates associated with foliations of quadratic differentials on a Riemann surface. A wall crossing formula of Kontsevich and Soibelman arises both as a crucial consistency condition and an effective computational tool. On the other hand Gross and Siebert have succeeded in determining instanton corrections of complex structures of Calabi-Yau varieties in the context of mirror symmetry from a singular affine structure with additional data. We will show that the two instanton correction problems are equivalent in an appropriate sense via the identification of the wall crossing formulas in the metric problem with consistency conditions in the complex structure problem. This is a nontrivial statement of mirror symmetry of Hitchin's moduli spaces which till now has been mostly studied in the framework of geometric Langlands duality. This result provides examples of Calabi-Yau varieties where the instanton correction (in the sense of mirror symmetry) of metrics and complex structures can be determined. This equivalence also relates certain enumerative problems in foliations to some gluing constructions of affine varieties.
by Wenxuan Lu.
Ph.D.
Vaintrob, Dmitry. "Mirror symmetry and the K theory of a p-adic group". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104578.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-61).
Let G be a split, semisimple p-adic group. We construct a derived localization functor Loc : ... from the compactified category of [BK2] associated to G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks have finite-multiplicity isotypic components as representations of the stabilizer. Our construction is motivated by the "coherent-constructible correspondence" functor in toric mirror symmetry and a construction of [CCC]. We show that Loc has a number of useful properties, including the fact that the sections ... compactifying the finitely-generated representation V. We also construct a depth = e "truncated" analogue Loc(e) which has finite-dimensional stalks, and satisfies the property RIP ... V of depth = e. We deduce that every finitely-generated representation of G has a bounded resolution by representations induced from finite-dimensional representations of compact open subgroups, and use this to write down a set of generators for the K-theory of G in terms of K-theory of its parahoric subgroups.
by Dmitry A. Vaintrob.
Ph. D.
Sheridan, Nicholas (Nicholas James). "Homological mirror symmetry for a Calabi-Yau hypersurface in projective space". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73374.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 365-369).
This thesis is concerned with Kontsevich's Homological Mirror Symmetry conjecture. In Chapter 1, which is based on [1], we consider the n-dimensional pair of pants, which is defined to be the complement of n + 2 generic hyperplanes in CPn. The pair of pants is conjectured to be mirror to the Landau-Ginzburg model (Cn+2 , W), where W = z1...zn+2 We construct an immersed Lagrangian sphere in the pair of pants, and show that its endomorphism A.. algebra in the Fukaya category is quasi-isomorphic to the endomorphism dg algebra of the structure sheaf of the origin in the mirror,.giving some evidence for the Homological Mirror Symmetry conjecture in this case. In Chapter 2, which is based on [2], we build on these results to prove Homological Mirror Symmetry for a smooth d-dimensional Calabi-Yau hypersurface in projective space, for any d =/> 3.
by Nicholas Sheridan.
Ph.D.
MAGID, DIANE ALEXIS. "FRAMES OF REFERENCE, THE PERCEPTION OF SYMMETRY AND THE MIRROR ILLUSION (ENANTIOMORPHS)". Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188154.
Texto completoBarrott, Lawrence Jack. "Convergence of the mirror to a rational elliptic surface". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285007.
Texto completoRainville, Stéphane Jean Michel. "The spatial mechanisms mediating the perception of mirror symmetry in human vision /". Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36688.
Texto completoOverall, results from empirical and modeling work revealed an intimate link between symmetry perception and the properties of spatial filters. In particular, I argue that the size of the IR tends to vary such that a fixed amount of information is integrated irrespective of the spatial properties of the stimulus. Implications for the functional architecture of symmetry perception are discussed, and a paradigm for future research in symmetry perception is proposed in which spatial filtering is extended to higher orders of spatial complexity.
Basalaev, Alexey [Verfasser]. "Mirror symmetry for simple elliptic singularities with a group action / Alexey Basalaev". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1073604454/34.
Texto completoMertens, Adrian [Verfasser] y Christian [Akademischer Betreuer] Römelsberger. "Mirror Symmetry in the presence of Branes / Adrian Mertens. Betreuer: Christian Römelsberger". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1016172877/34.
Texto completoRainville, Stéphane Jean Michel. "The spatial mechanisms mediating the perception of mirror symmetry in human vision". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ64650.pdf.
Texto completoBuchholz, Arne Verfasser] y Hannah [Akademischer Betreuer] [Markwig. "Tropical covers, moduli spaces & mirror symmetry / Arne Buchholz. Betreuer: Hannah Markwig". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1060715953/34.
Texto completoJost, Jan Niklas [Verfasser] y Thomas [Akademischer Betreuer] Reichelt. "Mirror Symmetry for Del Pezzo Surfaces / Jan Niklas Jost ; Betreuer: Thomas Reichelt". Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1227711492/34.
Texto completoJost, Jan [Verfasser] y Thomas [Akademischer Betreuer] Reichelt. "Mirror Symmetry for Del Pezzo Surfaces / Jan Niklas Jost ; Betreuer: Thomas Reichelt". Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1227711492/34.
Texto completoSmorenburg, Ana Renée Pascale. "Mirror (a)symmetry? : visuo-proprioceptive interactions in individuals with spastic hemiparetic cerebral palsy". Thesis, Manchester Metropolitan University, 2012. http://e-space.mmu.ac.uk/314042/.
Texto completoHuang, Yu-Chien Ph D. Massachusetts Institute of Technology. "Elliptic fibrations among toric hypersurface Calabi-Yau manifolds and mirror symmetry of fibrations". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/124593.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 245-255).
In this thesis, we investigate the prevalence of elliptic and genus one fibrations among toric hypersurface Calabi-Yau three folds by (1) constructing explicitly elliptically fibered Calabi-Yau threefolds with large Hodge numbers using Weierstrass model techniques motivated by F-theory, and comparing the Tate-tuned Wierstrass model set with the set of Calabi-Yau threefolds constructed using toric hypersurface methods, and (2) systematically analyzing directly the fibration structure of 4D reflexive polytopes by classifying all the 2D subpolytopes of the 4D polytopes in the Kreuzer and Skarke database of toric Calabi-Yau hypersurfaces. With the classification of the 2D fibers, we then study the mirror symmetry structure of elliptic toric hypersurface Calabi-Yau threefolds. We show that the mirror symmetry of Calabi-Yau manifolds factorizes between the toric fiber and the base: if there exist 2D mirror fibers of a pair of mirror reflexive polytopes, the base and fibration structure of one hypersurface Calabi-Yau determine the base of the other.
by Yu-Chien Huang.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Francis, Amanda. "New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3265.
Texto completoJones, Daniel M. "A convergent beam electron diffraction study of some rare-earth perovskite oxides /". Connect to this title, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0057.
Texto completoBrown, Matthew Robert. "Construction and Isomorphism of Landau-Ginzburg B-Model Frobenius Algebras". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5652.
Texto completoCordner, Nathan James. "Isomorphisms of Landau-Ginzburg B-Models". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5882.
Texto completoArgüz, Nurömür Hülya [Verfasser] y Bernd [Akademischer Betreuer] Siebert. "Log geometric techniques for open invariants in mirror symmetry / Nurömür Hülya Argüz ; Betreuer: Bernd Siebert". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1123729506/34.
Texto completoArgüz, Nurömür Hülya Verfasser] y Bernd [Akademischer Betreuer] [Siebert. "Log geometric techniques for open invariants in mirror symmetry / Nurömür Hülya Argüz ; Betreuer: Bernd Siebert". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://nbn-resolving.de/urn:nbn:de:gbv:18-82774.
Texto completoJones, Daniel M. "A convergent beam electron diffraction study of some rare-earth perovskite oxides". University of Western Australia. School of Physics, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0057.
Texto completoWu, Ruoxu. "Notes on Some (0,2) Supersymmetric Theories in Two Dimensions". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77921.
Texto completoPh. D.
Pavanelli, Simone. "Mirror symmetry for a two parameter family of Calabi-Yau three-folds with Euler characteristic 0". Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396954.
Texto completoGoldner, Christoph Jan [Verfasser]. "Enumerative aspects of Tropical Geometry : Curves with cross-ratio constraints and Mirror Symmetry / Christoph Jan Goldner". Tübingen : Universitätsbibliothek Tübingen, 2021. http://d-nb.info/1233678248/34.
Texto completoMerrell, Evan D. "A Maple Program for Computing Landau-Ginzburg A- and B-Models and an Exploration of Mirror Symmetry". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3322.
Texto completoComparin, Paola. "Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3". Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2281/document.
Texto completoA K3 surface is a complex compact projective surface X which is smooth and such that its canonical bundle is trivial and h0;1(X) = 0. In this thesis we study two different topics about K3 surfaces. First we consider K3 surfaces obtained as double covering of P2 branched on a sextic curve. For these surfaces we classify elliptic fibrations and their Mordell-Weil group, i.e. the group of sections. A 2-torsion section induces a symplectic involution of the surface, called van Geemen-Sarti involution. The classification of elliptic fibrations and 2-torsion sections allows us to classify all van Geemen-Sarti involutions on the class of K3 surfaces we are considering. Moreover, we give details in order to obtain equations for the elliptic fibrations and their quotient by the van Geemen-Sarti involutions. Then we focus on the mirror construction of Berglund-Hübsch-Chiodo-Ruan (BHCR). This construction starts from a polynomial in a weighted projective space together with a group of diagonal automorphisms (with some properties) and gives a pair of Calabi-Yau varieties which are mirror in the classical sense. The construction works for any dimension. We use this construction to obtain pairs of K3 surfaces which carry a non-symplectic automorphism of prime order p > 3. Dolgachev and Nikulin proposed another notion of mirror symmetry for K3 surfaces: the mirror symmetry for lattice polarized K3 surfaces (LPK3). In this thesis we show how to polarize the K3 surfaces obtained from the BHCR construction and we prove that these surfaces belong to LPK3 mirror families
Sandberg, Ryan Thor. "A Nonabelian Landau-Ginzburg B-Model Construction". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5833.
Texto completo