Artículos de revistas sobre el tema "Mini-Batch Optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Mini-Batch Optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Gultekin, San, Avishek Saha, Adwait Ratnaparkhi y John Paisley. "MBA: Mini-Batch AUC Optimization". IEEE Transactions on Neural Networks and Learning Systems 31, n.º 12 (diciembre de 2020): 5561–74. http://dx.doi.org/10.1109/tnnls.2020.2969527.
Texto completoFeyzmahdavian, Hamid Reza, Arda Aytekin y Mikael Johansson. "An Asynchronous Mini-Batch Algorithm for Regularized Stochastic Optimization". IEEE Transactions on Automatic Control 61, n.º 12 (diciembre de 2016): 3740–54. http://dx.doi.org/10.1109/tac.2016.2525015.
Texto completoBanerjee, Subhankar y Shayok Chakraborty. "Deterministic Mini-batch Sequencing for Training Deep Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de mayo de 2021): 6723–31. http://dx.doi.org/10.1609/aaai.v35i8.16831.
Texto completoSimanungkalit, F. R. J., H. Hanifah, G. Ardaneswari, N. Hariadi y B. D. Handari. "Prediction of students’ academic performance using ANN with mini-batch gradient descent and Levenberg-Marquardt optimization algorithms". Journal of Physics: Conference Series 2106, n.º 1 (1 de noviembre de 2021): 012018. http://dx.doi.org/10.1088/1742-6596/2106/1/012018.
Texto completovan Herwaarden, Dirk Philip, Christian Boehm, Michael Afanasiev, Solvi Thrastarson, Lion Krischer, Jeannot Trampert y Andreas Fichtner. "Accelerated full-waveform inversion using dynamic mini-batches". Geophysical Journal International 221, n.º 2 (21 de febrero de 2020): 1427–38. http://dx.doi.org/10.1093/gji/ggaa079.
Texto completoGhadimi, Saeed, Guanghui Lan y Hongchao Zhang. "Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization". Mathematical Programming 155, n.º 1-2 (11 de diciembre de 2014): 267–305. http://dx.doi.org/10.1007/s10107-014-0846-1.
Texto completoKervazo, C., T. Liaudat y J. Bobin. "Faster and better sparse blind source separation through mini-batch optimization". Digital Signal Processing 106 (noviembre de 2020): 102827. http://dx.doi.org/10.1016/j.dsp.2020.102827.
Texto completoDimitriou, Neofytos y Ognjen Arandjelović. "Sequential Normalization: Embracing Smaller Sample Sizes for Normalization". Information 13, n.º 7 (12 de julio de 2022): 337. http://dx.doi.org/10.3390/info13070337.
Texto completoBakurov, Illya, Marco Buzzelli, Mauro Castelli, Leonardo Vanneschi y Raimondo Schettini. "General Purpose Optimization Library (GPOL): A Flexible and Efficient Multi-Purpose Optimization Library in Python". Applied Sciences 11, n.º 11 (23 de mayo de 2021): 4774. http://dx.doi.org/10.3390/app11114774.
Texto completoLi, Zhiyuan, Xun Jian, Yue Wang, Yingxia Shao y Lei Chen. "DAHA: Accelerating GNN Training with Data and Hardware Aware Execution Planning". Proceedings of the VLDB Endowment 17, n.º 6 (febrero de 2024): 1364–76. http://dx.doi.org/10.14778/3648160.3648176.
Texto completoPanteleev, Andrei V. y Aleksandr V. Lobanov. "Application of Mini-Batch Metaheuristic Algorithms in Problems of Optimization of Deterministic Systems with Incomplete Information about the State Vector". Algorithms 14, n.º 11 (14 de noviembre de 2021): 332. http://dx.doi.org/10.3390/a14110332.
Texto completoFan, Shengping, Jun Li, Linyong Li y Zhigang Chu. "Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network". Energies 15, n.º 3 (20 de enero de 2022): 749. http://dx.doi.org/10.3390/en15030749.
Texto completoMessaoud, Seifeddine, Abbas Bradai y Emmanuel Moulay. "Online GMM Clustering and Mini-Batch Gradient Descent Based Optimization for Industrial IoT 4.0". IEEE Transactions on Industrial Informatics 16, n.º 2 (febrero de 2020): 1427–35. http://dx.doi.org/10.1109/tii.2019.2945012.
Texto completoLin, Zhenwei, Jingfan Xia, Qi Deng y Luo Luo. "Decentralized Gradient-Free Methods for Stochastic Non-smooth Non-convex Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 16 (24 de marzo de 2024): 17477–86. http://dx.doi.org/10.1609/aaai.v38i16.29697.
Texto completoYang, Wei, Qiheng Yuan, Yongli Wang, Fei Zheng, Xin Shi y Yi Li. "Carbon Emission Forecasting Study Based on Influence Factor Mining and Mini-Batch Stochastic Gradient Optimization". Energies 17, n.º 1 (29 de diciembre de 2023): 188. http://dx.doi.org/10.3390/en17010188.
Texto completoHuang, Wendi. "Implementation of Parallel Optimization Algorithms for NLP: Mini-batch SGD, SGD with Momentum, AdaGrad Adam". Applied and Computational Engineering 81, n.º 1 (8 de noviembre de 2024): 226–33. http://dx.doi.org/10.54254/2755-2721/81/20241146.
Texto completoLi, Jing, Xiaorun Li y Liaoying Zhao. "Unmixing of large-scale hyperspectral data based on projected mini-batch gradient descent". International Journal of Wavelets, Multiresolution and Information Processing 15, n.º 06 (noviembre de 2017): 1750059. http://dx.doi.org/10.1142/s021969131750059x.
Texto completoSong, Hwa Jeon, Ho Young Jung y Jeon Gue Park. "Implementation of CNN in the view of mini-batch DNN training for efficient second order optimization". Journal of the Korean society of speech sciences 8, n.º 2 (30 de junio de 2016): 23–30. http://dx.doi.org/10.13064/ksss.2016.8.2.023.
Texto completoBatista-Silva, João, Diana Gomes, Jorge Barroca-Ferreira, Eugénia Gallardo, Ângela Sousa y Luís A. Passarinha. "Specific Six-Transmembrane Epithelial Antigen of the Prostate 1 Capture with Gellan Gum Microspheres: Design, Optimization and Integration". International Journal of Molecular Sciences 24, n.º 3 (18 de enero de 2023): 1949. http://dx.doi.org/10.3390/ijms24031949.
Texto completoKim, Yonghoon y and Mokdong Chung. "An Approach to Hyperparameter Optimization for the Objective Function in Machine Learning". Electronics 8, n.º 11 (1 de noviembre de 2019): 1267. http://dx.doi.org/10.3390/electronics8111267.
Texto completoKazei, Vladimir, Hong Liang y Ali AlDawood. "Acquisition and near-surface impacts on VSP mini-batch FWI and RTM imaging in desert environment". Leading Edge 42, n.º 3 (marzo de 2023): 165–72. http://dx.doi.org/10.1190/tle42030165.1.
Texto completoPanteleev, A. V. y A. V. Lobanov. "The mini-batch adaptive method of random search (MAMRS) for parameters optimization in the tracking control problem". IOP Conference Series: Materials Science and Engineering 927 (26 de septiembre de 2020): 012025. http://dx.doi.org/10.1088/1757-899x/927/1/012025.
Texto completoChakraborty, Arya. "Perceptron Collaborative Filtering". International Journal for Research in Applied Science and Engineering Technology 11, n.º 2 (28 de febrero de 2023): 437–47. http://dx.doi.org/10.22214/ijraset.2023.49044.
Texto completoAo, Wenqi, Wenbin Li y Jianliang Qian. "A data and knowledge driven approach for SPECT using convolutional neural networks and iterative algorithms". Journal of Inverse and Ill-posed Problems 29, n.º 4 (26 de marzo de 2021): 543–55. http://dx.doi.org/10.1515/jiip-2020-0056.
Texto completoKalaiselvi, K. y M. Kasthuri. "Tuning VGG19 hyperparameters for improved pneumonia classification". Scientific Temper 15, n.º 02 (15 de junio de 2024): 2231–37. http://dx.doi.org/10.58414/scientifictemper.2024.15.2.36.
Texto completoMančev, Dejan y Branimir Todorović. "A primal sub-gradient method for structured classification with the averaged sum loss". International Journal of Applied Mathematics and Computer Science 24, n.º 4 (1 de diciembre de 2014): 917–30. http://dx.doi.org/10.2478/amcs-2014-0067.
Texto completoBilal, Muhammad Atif, Yongzhi Wang, Yanju Ji, Muhammad Pervez Akhter y Hengxi Liu. "Earthquake Detection Using Stacked Normalized Recurrent Neural Network (SNRNN)". Applied Sciences 13, n.º 14 (12 de julio de 2023): 8121. http://dx.doi.org/10.3390/app13148121.
Texto completoGhosh, Bishwamittra, Dmitry Malioutov y Kuldeep S. Meel. "Efficient Learning of Interpretable Classification Rules". Journal of Artificial Intelligence Research 74 (30 de agosto de 2022): 1823–63. http://dx.doi.org/10.1613/jair.1.13482.
Texto completoOelgemöller, Michael, Norbert Hoffmann y Oksana Shvydkiv. "From 'Lab & Light on a Chip' to Parallel Microflow Photochemistry". Australian Journal of Chemistry 67, n.º 3 (2014): 337. http://dx.doi.org/10.1071/ch13591.
Texto completoWei, Pengzhi, Yanqiu Li, Tie Li, Naiyuan Sheng, Enze Li y Yiyu Sun. "Multi-Objective Defocus Robust Source and Mask Optimization Using Sensitive Penalty". Applied Sciences 9, n.º 10 (27 de mayo de 2019): 2151. http://dx.doi.org/10.3390/app9102151.
Texto completoLiu, Pingping, Guixia Gou, Xue Shan, Dan Tao y Qiuzhan Zhou. "Global Optimal Structured Embedding Learning for Remote Sensing Image Retrieval". Sensors 20, n.º 1 (4 de enero de 2020): 291. http://dx.doi.org/10.3390/s20010291.
Texto completoLiu, Fangyu, Rongtian Ye, Xun Wang y Shuaipeng Li. "HAL: Improved Text-Image Matching by Mitigating Visual Semantic Hubs". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11563–71. http://dx.doi.org/10.1609/aaai.v34i07.6823.
Texto completoBrouard, Céline, Antoine Bassé, Florence d’Alché-Buc y Juho Rousu. "Improved Small Molecule Identification through Learning Combinations of Kernel Regression Models". Metabolites 9, n.º 8 (1 de agosto de 2019): 160. http://dx.doi.org/10.3390/metabo9080160.
Texto completoAL-Hawamleh, Ahmad M. "Advanced Spam Filtering in Electronic Mail Using Hybrid the Mini Batch K-Means Normalized Mutual Information Feature Elimination with Elephant Herding Optimization Technique". International Journal of Computing and Digital Systems 13, n.º 1 (30 de mayo de 2023): 1409–22. http://dx.doi.org/10.12785/ijcds/1301114.
Texto completoTsalera, Eleni, Andreas Papadakis y Maria Samarakou. "Comparison of Pre-Trained CNNs for Audio Classification Using Transfer Learning". Journal of Sensor and Actuator Networks 10, n.º 4 (10 de diciembre de 2021): 72. http://dx.doi.org/10.3390/jsan10040072.
Texto completoChen, Yung-Ting, Yao-Liang Chen, Yi-Yun Chen, Yu-Ting Huang, Ho-Fai Wong, Jiun-Lin Yan y Jiun-Jie Wang. "Deep Learning–Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke". Diagnostics 12, n.º 4 (25 de marzo de 2022): 807. http://dx.doi.org/10.3390/diagnostics12040807.
Texto completoVassileva, Maria, Eligio Malusà, Lidia Sas-Paszt, Pawel Trzcinski, Antonia Galvez, Elena Flor-Peregrin, Stefan Shilev, Loredana Canfora, Stefano Mocali y Nikolay Vassilev. "Fermentation Strategies to Improve Soil Bio-Inoculant Production and Quality". Microorganisms 9, n.º 6 (9 de junio de 2021): 1254. http://dx.doi.org/10.3390/microorganisms9061254.
Texto completoWu, Ming-Yu, Yan Wu, Xin-Yi Yuan, Zhi-Hua Chen, Wei-Tao Wu y Nadine Aubry. "Fast Prediction of Flow Field around Airfoils Based on Deep Convolutional Neural Network". Applied Sciences 12, n.º 23 (25 de noviembre de 2022): 12075. http://dx.doi.org/10.3390/app122312075.
Texto completoKhunratchasana, Kheamparit y Tassanan Treenuntharath. "Thai digit handwriting image classification with convolution neuron networks". Indonesian Journal of Electrical Engineering and Computer Science 27, n.º 1 (1 de julio de 2022): 110. http://dx.doi.org/10.11591/ijeecs.v27.i1.pp110-117.
Texto completoLi, Jie, Boyu Zhao, Kai Wu, Zhicheng Dong, Xuerui Zhang y Zhihao Zheng. "A Representation Generation Approach of Transmission Gear Based on Conditional Generative Adversarial Network". Actuators 10, n.º 5 (23 de abril de 2021): 86. http://dx.doi.org/10.3390/act10050086.
Texto completoWalls, Laura Ellen, José L. Martinez y Leonardo Rios-Solis. "Enhancing Saccharomyces cerevisiae Taxane Biosynthesis and Overcoming Nutritional Stress-Induced Pseudohyphal Growth". Microorganisms 10, n.º 1 (13 de enero de 2022): 163. http://dx.doi.org/10.3390/microorganisms10010163.
Texto completoK M, Prof Ramya, Pavan H, Darshan Gowda, Bhagavantray Hosamani y Jagadeva A S. "MULTIMODAL BIOMETRIC IDENTIFICATION SYSTEM USING THE FUSION OF FINGERPRINT AND IRIS RECOGNITION WITH CNN APPROACH". International Journal of Engineering Applied Sciences and Technology 6, n.º 8 (1 de diciembre de 2021): 213–20. http://dx.doi.org/10.33564/ijeast.2021.v06i08.036.
Texto completoNtakolia, Charis y Dimitrios V. Lyridis. "Path Planning in the Case of Swarm Unmanned Surface Vehicles for Visiting Multiple Targets". Journal of Marine Science and Engineering 11, n.º 4 (26 de marzo de 2023): 719. http://dx.doi.org/10.3390/jmse11040719.
Texto completoGhimire, Nawaraj. "A Recognition System for Devanagari Handwritten Digits Using CNN". American Journal of Electrical and Computer Engineering 8, n.º 2 (29 de julio de 2024): 21–30. http://dx.doi.org/10.11648/j.ajece.20240802.11.
Texto completoLu, Zhenglong, Jie Li, Xi Zhang, Kaiqiang Feng, Xiaokai Wei, Debiao Zhang, Jing Mi y Yang Liu. "A New In-Flight Alignment Method with an Application to the Low-Cost SINS/GPS Integrated Navigation System". Sensors 20, n.º 2 (16 de enero de 2020): 512. http://dx.doi.org/10.3390/s20020512.
Texto completoWikamulia, Nathaniel y Sani Muhamad Isa. "Predictive business intelligence dashboard for food and beverage business". Bulletin of Electrical Engineering and Informatics 12, n.º 5 (1 de octubre de 2023): 3016–26. http://dx.doi.org/10.11591/eei.v12i5.5162.
Texto completoHuang, Lingbo, Yushi Chen, Xin He y Pedram Ghamisi. "Supervised Contrastive Learning-Based Classification for Hyperspectral Image". Remote Sensing 14, n.º 21 (2 de noviembre de 2022): 5530. http://dx.doi.org/10.3390/rs14215530.
Texto completoShaaf, Zakarya Farea, Muhammad Mahadi Abdul Jamil, Radzi Ambar, Ahmed Abdu Alattab, Anwar Ali Yahya y Yousef Asiri. "Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network". Diagnostics 12, n.º 2 (5 de febrero de 2022): 414. http://dx.doi.org/10.3390/diagnostics12020414.
Texto completoProzur, Vitalii. "Architecture and Formal-mathematical Justification of Generative Adversarial Networks". Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì 15 (15 de julio de 2024): 15–22. http://dx.doi.org/10.23939/sisn2024.15.015.
Texto completoBudhijanto, Wiratni, Sholahuddin Al Ayyubi y Khalid Abdul Latif. "Evaluasi Rangkaian Anaerobic Fluidized Bed Reactor (AFBR) dan Micro Bubble Generator (MBG) untuk Pengolahan Air Lindi Sampah". Jurnal Teknik Kimia Indonesia 18, n.º 1 (14 de enero de 2020): 1. http://dx.doi.org/10.5614/jtki.2019.18.1.1.
Texto completo