Literatura académica sobre el tema "Microtubules dynamics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Microtubules dynamics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Microtubules dynamics"
Zwetsloot, Alexander James, Gokhan Tut y Anne Straube. "Measuring microtubule dynamics". Essays in Biochemistry 62, n.º 6 (4 de octubre de 2018): 725–35. http://dx.doi.org/10.1042/ebc20180035.
Texto completoVemu, Annapurna, Joseph Atherton, Jeffrey O. Spector, Carolyn A. Moores y Antonina Roll-Mecak. "Tubulin isoform composition tunes microtubule dynamics". Molecular Biology of the Cell 28, n.º 25 (diciembre de 2017): 3564–72. http://dx.doi.org/10.1091/mbc.e17-02-0124.
Texto completoParker, Amelia L., Wee Siang Teo, Elvis Pandzic, Juan Jesus Vicente, Joshua A. McCarroll, Linda Wordeman y Maria Kavallaris. "β-Tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells". Life Science Alliance 1, n.º 2 (19 de abril de 2018): e201800059. http://dx.doi.org/10.26508/lsa.201800059.
Texto completoGupta, Mohan L., Claudia J. Bode, Douglas A. Thrower, Chad G. Pearson, Kathy A. Suprenant, Kerry S. Bloom y Richard H. Himes. "β-Tubulin C354 Mutations that Severely Decrease Microtubule Dynamics Do Not Prevent Nuclear Migration in Yeast". Molecular Biology of the Cell 13, n.º 8 (agosto de 2002): 2919–32. http://dx.doi.org/10.1091/mbc.e02-01-0003.
Texto completoRodionov, V. I., S. S. Lim, V. I. Gelfand y G. G. Borisy. "Microtubule dynamics in fish melanophores." Journal of Cell Biology 126, n.º 6 (15 de septiembre de 1994): 1455–64. http://dx.doi.org/10.1083/jcb.126.6.1455.
Texto completoVorobjev, I. A., T. M. Svitkina y G. G. Borisy. "Cytoplasmic assembly of microtubules in cultured cells". Journal of Cell Science 110, n.º 21 (1 de noviembre de 1997): 2635–45. http://dx.doi.org/10.1242/jcs.110.21.2635.
Texto completoCassimeris, L. U., P. Wadsworth y E. D. Salmon. "Dynamics of microtubule depolymerization in monocytes." Journal of Cell Biology 102, n.º 6 (1 de junio de 1986): 2023–32. http://dx.doi.org/10.1083/jcb.102.6.2023.
Texto completoKosco, Karena A., Chad G. Pearson, Paul S. Maddox, Peijing Jeremy Wang, Ian R. Adams, E. D. Salmon, Kerry Bloom y Tim C. Huffaker. "Control of Microtubule Dynamics by Stu2p Is Essential for Spindle Orientation and Metaphase Chromosome Alignment in Yeast". Molecular Biology of the Cell 12, n.º 9 (septiembre de 2001): 2870–80. http://dx.doi.org/10.1091/mbc.12.9.2870.
Texto completoHyman, A. A. y T. J. Mitchison. "Modulation of microtubule stability by kinetochores in vitro." Journal of Cell Biology 110, n.º 5 (1 de mayo de 1990): 1607–16. http://dx.doi.org/10.1083/jcb.110.5.1607.
Texto completoWarren, James C., Adam Rutkowski y Lynne Cassimeris. "Infection with Replication-deficient Adenovirus Induces Changes in the Dynamic Instability of Host Cell Microtubules". Molecular Biology of the Cell 17, n.º 8 (agosto de 2006): 3557–68. http://dx.doi.org/10.1091/mbc.e05-09-0850.
Texto completoTesis sobre el tema "Microtubules dynamics"
Schaedel, Laura. "Les propriétés mécaniques des microtubules". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY010/document.
Texto completoMicrotubules—which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport—can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules’ adaptation to mechanical stresses
A, S. Jijumon. "Systematic characterization of a large number of Microtubule-Associated Proteins using purification-free TIRF-reconstitution assays Purification of tubulin with controlled post-translational modifications by polymerization–depolymerization cycles Microtubule-Associated Proteins: Structuring the Cytoskeleton Purification of custom modified tubulin from cell lines and mouse brains by polymerization-depolymerization cycles". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL007.
Texto completoMicrotubules (MTs) are dynamic filaments involved in a plethora of functions such as cell division, cell shape, ciliary beating, neuronal differentiation. Strict regulation of MT functions is therefore of high importance for the cellular homeostasis, and any perturbations could potentially lead to diseases like cancer, ciliopathies and neurodegeneration. At the protein level, there are accumulating studies showing that MT properties can be controlled via interaction with a large variety of MT-associated proteins (MAPs). Our knowledge of MAPs has been enriched over time, but up to this date no systematic studies exist that aim to describe and categorize these proteins according to their binding mechanisms and structural effects on MTs. In my PhD project, I have developed an assay for rapid and systematic analysis of MAPs using cleared lysates of cultured human cells in which I overexpress a variety of different MAPs. The dynamic behaviour of growing MTs in the presence of those MAPs were imaged using TIRF microscopy. This allows me to study the behaviour of around 50 MAP candidates in a situation close to their natural environment, but eliminating complexity coming from different organelles and crammed cytoskeleton filaments inside the confined intracellular space. Indeed, most MAPs were nicely soluble in the extract approach, while purification attempts of several of them led to protein precipitation, thus making classical invitro reconstitution approaches impossible. This novel approach allowed me to compare many MAPs under similar experimental conditions, and helped to define several novel proteins as bona-fide MAPs. I demonstrate that previously uncharacterized MAPs have strikingly different effects on MT polymerization and MT structure, thus creating a variety of distinct MT arrays. I further extended this cell-free pipeline to study structures of MAPs bound to MTs by cryo-electron microscopy, or to study the MT interactions of MAPs carrying patient mutations. Finally, I demonstrated that my approach can be used to test the sensitivity of MAPs to tubulin PTMs, as well as to study the role of MAPs in actin-MT crosstalk. In the future, this novel approach will allow for a better mechanistic understanding of how MAPs and MTs together control cytoskeleton functions
Jiang, Nan. "Exploring Microtubule Structural Mechanics through Molecular Dynamics Simulations". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504878667194719.
Texto completoMelbinger, Anna Tatjana. "On the role of fluctuations in evolutionary dynamics and transport on microtubules". Diss., Ludwig-Maximilians-Universität München, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-148246.
Texto completoSwoger, Maxx Ryan. "Computational Investigation of Material and Dynamic Properties of Microtubules". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1532108320185937.
Texto completoPaulin-Levasseur, Micheline. "Cellular dynamics of vimentin filaments and their spatial relationship to microtubules in lymphocytes". Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5396.
Texto completoSousa, Da Costa Maria Judite. "Csi2 modulates microtubule dynamics and helps organize the bipolar spindle for proper chromosome segregation in fission yeast". Paris 6, 2013. http://www.theses.fr/2013PA066626.
Texto completoLa ségrégation correcte des chromosomes est processus fondamental pour maintenir la stabilité génomique. Des défauts de ségrégation sont souvent à l’origine de l’apparition de cellules aneuploïdes, caractéristique fréquemment observée dans les cellules cancéreuses. Dans les cellules eucaryotes, la ségrégation correcte des chromosomes est assurée par le fuseau mitotique. Des mécanismes de contrôle, tels que le point de contrôle mitotique et le bon attachement des centromères, sont mis en œuvre pour assurer la bonne ségrégation des chromosomes. Dans cette étude, nous avons pu établir chez le levure fissipare, que la protéine csi2, localisée aux pôles du fuseau mitotique, joue un rôle sur la dynamique des MTs mitotiques, dans la formation d’un fuseau mitotique intègre et par conséquent dans la ségrégation correcte des chromosomes. Les MTs composants le fuseau mitotique bipolaire sont dynamiques et de petite taille ~1µm ce qui représente un défis technique pour les imager, en effet, la résolution optique d’un microscope ~λ/2 est en général de 300nm. Nous avons développé une nouvelle approche pour imager les MTs mitotiques basée sur l’utilisation du mutant réversible thermosensible kinesin-5 cut7. 24ts, pour obtenir des cellules ayant des fuseaux monopolaires. Ainsi, nous avons pu mettre en évidence que la délétion de la protéine csi2 chez la levure S. Pombe était à l’origine d’un allongement de la longueur des microtubules mitotiques, d’une augmentation du nombre de cellules présentant un fuseau monopolaire et d’une augmentation des défauts de ségrégation des chromosomes. L’étude de l’implication de la protéine csi2 dans ces différents mécanismes nous a permis de mettre en évidence la contribution de chacun de ces mécanismes dans la bonne ségrégation des chromosomes. Nous proposons dans cette étude que le facteur déterminant à l’origine d’une ségrégation incorrecte des chromosomes serait majoritairement imputable à des défauts de régulation de la dynamique des microtubules
Ng, Daniel. "Investigating the dynamics of adhesion complex turnover by mass spectrometry based proteomics". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-dynamics-of-adhesion-complex-turnover-by-mass-spectrometry-based-proteomics(4e6d3051-c007-4715-a290-9acfd45d38a7).html.
Texto completoRauch, Philipp. "Neuronal Growth Cone Dynamics". Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-119885.
Texto completoShukla, Nandini Y. "Investigation of Microtubule dynamics and novel Microtubule-associated proteins in growth and development of the filamentous fungus, Aspergillus nidulans". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu149276142029341.
Texto completoLibros sobre el tema "Microtubules dynamics"
Microtubule dynamics: Methods and protocols. New York: Humana, 2011.
Buscar texto completoStraube, Anne, ed. Microtubule Dynamics. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-252-6.
Texto completo1937-, Soifer David, ed. Dynamic aspects of microtubule biology. New York, N.Y: New York Academy of Sciences, 1986.
Buscar texto completoQu, Xiaoyi. Microtubule Dynamics in Tau-dependent Amyloid Beta Synaptotoxicity. [New York, N.Y.?]: [publisher not identified], 2019.
Buscar texto completoLamb, Jeremy Charles. Fluorescent derivatives of tubulin as probes for the analysis of microtubule dynamics. Norwich: University of East Anglia, 1985.
Buscar texto completoBöhlke, Christopher. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. Freiburg: Universität, 2013.
Buscar texto completoMathew, Shyno. Molecular Dynamics Simulations of Microtubule-associated protein 1A/1B-light chain 3 (LC3) and its membrane associated form(LC3-II). [New York, N.Y.?]: [publisher not identified], 2017.
Buscar texto completoStraube, Anne. Microtubule Dynamics: Methods and Protocols. Humana Press, 2017.
Buscar texto completoMikhailov, Alexei. The dynamics and interactions of microtubules in locomoting fibroblasts. 1998.
Buscar texto completoWarner, Fred D. y J. Richard McIntosh. Cell Movement Vol. II: Kinesin, Dynein, and Microtubule Dynamics. Wiley & Sons, Incorporated, John, 1989.
Buscar texto completoCapítulos de libros sobre el tema "Microtubules dynamics"
Zdravković, Slobodan. "Nonlinear Dynamics of Microtubules". En Nonlinear Dynamics of Nanobiophysics, 263–305. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5323-1_10.
Texto completoCarlier, Marie-France, Ronald Melki, Cécile Combeau y D. Pantaloni. "Phosphate Release Following Nucleotide Hydrolysis Regulates the Dynamics of Actin Filaments and Microtubules". En Springer Series in Biophysics, 264–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73925-5_48.
Texto completoFlyvbjerg, Henrik. "Microtubule Dynamics". En Physics of Biological Systems, 213–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-540-49733-2_10.
Texto completoMcIntosh, J. R., V. A. Lombillo, C. Nislow y E. A. Vaisberg. "Microtubule Dynamics and Chromosome Movement". En The Cytoskeleton, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79482-7_1.
Texto completoStraube, Anne. "How to Measure Microtubule Dynamics?" En Methods in Molecular Biology, 1–14. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-252-6_1.
Texto completoPurich, Daniel L. y James M. Angelastro. "Microtubule Dynamics: Bioenergetics and Control". En Advances in Enzymology - and Related Areas of Molecular Biology, 121–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470123157.ch4.
Texto completovan Haren, Jeffrey, Lauren S. Adachi y Torsten Wittmann. "Optogenetic Control of Microtubule Dynamics". En Methods in Molecular Biology, 211–34. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0219-5_14.
Texto completoHonore, Stéphane y Diane Braguer. "Investigating Microtubule Dynamic Instability Using Microtubule-Targeting Agents". En Methods in Molecular Biology, 245–60. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-252-6_18.
Texto completoBajer, Andrew S., Elena A. Smirnova y Jadwiga Molè-Bajer. "Microtubule Converging Centers — Implications for Microtubule Dynamics in Higher Plants". En Chromosome Segregation and Aneuploidy, 225–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84938-1_19.
Texto completoBajer, Andrew S., Elena A. Smirnova, Kolja A. Wawrowsky, Rainer Wolf y Jadwiga Molè-Bajer. "Microtubule Converging Centers: Implications for Microtubule Dynamics in Higher Plants". En Biomechanics of Active Movement and Division of Cells, 471–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78975-5_20.
Texto completoActas de conferencias sobre el tema "Microtubules dynamics"
Aprodu, Iuliana, Alfonso Gautieri, Franco M. Montevecchi, Alberto Redaelli y Monica Soncini. "What Molecular Dynamics Simulations Can Tell Us About Mechanical Properties of Kinesin and Its Interaction With Tubulin". En ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176316.
Texto completoZdravković, Slobodan. "Kinks and breathers in nonlinear dynamics of microtubules". En INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897908.
Texto completoEnemark, So̸ren, Marco A. Deriu y Monica Soncini. "Mechanical Properties of Tubulin Molecules by Molecular Dynamics Simulations". En ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95674.
Texto completoHendricks, Adam G., Bogdan I. Epureanu y Edgar Meyho¨fer. "Collective Dynamics of Kinesin-1 Motor Proteins Transporting a Common Load". En ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34702.
Texto completoSalmon, E. D. "Video microscopy analysis of the polymerization dynamics of individual microtubules". En The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40582.
Texto completoMATSSON, L. "DNA AND MICROTUBULES AS VORTEX-STRINGS IN SUPERCONDUCTOR-LIKE DYNAMICS". En Proceedings of the First Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811301_0018.
Texto completoEsteve, Marie-Anne, Stéphane Honore, Nathalie Mckay, Felix Bachmann, Heidi Lane y Diane Braguer. "Abstract 1977: BAL27862: A unique microtubule-targeted drug that suppresses microtubule dynamics, severs microtubules, and overcomes Bcl-2- and tubulin subtype-related drug resistance". En Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1977.
Texto completoPantaloni, D., M. F. Carlier, R. Melki, C. Combeau y C. Valentin-Ranc. "Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules". En The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40581.
Texto completoShi, Jianmin, Caixia Jia, Tao Han, Alfred C. H. Yu y Peng Qin. "Dynamics of Microtubules Disruption and Rearrangement in the Sonoporated Human Umbilical Vein Endothelial Cells". En 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019. http://dx.doi.org/10.1109/ultsym.2019.8926089.
Texto completoMotie Shirazi, Mohsen, Omid Abouali, Homayoon Emdad, Mohammad Reza Nabavizade, Hossein Mirhadi y Goodarz Ahmadi. "Numerical Investigation of Irrigant Penetration Into Dentinal Microtubules". En ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21743.
Texto completoInformes sobre el tema "Microtubules dynamics"
Orr, George A. Taxol Resistance and Microtubule Dynamics in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junio de 2002. http://dx.doi.org/10.21236/ada407181.
Texto completoOrr, George A. Taxol Resistance and Microtubule Dynamics in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junio de 2003. http://dx.doi.org/10.21236/ada416454.
Texto completoOrr, George A. Taxol Resistance and Microtubule Dynamics in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junio de 2004. http://dx.doi.org/10.21236/ada425729.
Texto completo