Literatura académica sobre el tema "Micropolar fluids equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Micropolar fluids equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Micropolar fluids equations"
Stamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic y Jelena Petrovic. "Nano and micropolar MHD fluid flow and heat transfer in inclined channel". Thermal Science, n.º 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Texto completoKocić, Miloš, Živojin Stamenković, Jelena Petrović y Jasmina Bogdanović-Jovanović. "Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel". Fluids 8, n.º 3 (8 de marzo de 2023): 93. http://dx.doi.org/10.3390/fluids8030093.
Texto completoYang, Hujun, Xiaoling Han y Caidi Zhao. "Homogenization of Trajectory Statistical Solutions for the 3D Incompressible Micropolar Fluids with Rapidly Oscillating Terms". Mathematics 10, n.º 14 (15 de julio de 2022): 2469. http://dx.doi.org/10.3390/math10142469.
Texto completoRahman, M. M. y T. Sultana. "Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium". Nonlinear Analysis: Modelling and Control 13, n.º 1 (25 de enero de 2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Texto completoChen, James, James D. Lee y Chunlei Liang. "Constitutive equations of Micropolar electromagnetic fluids". Journal of Non-Newtonian Fluid Mechanics 166, n.º 14-15 (agosto de 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Texto completoIDO, Yasushi. "Basic Equations of Micropolar Magnetic Fluids". Transactions of the Japan Society of Mechanical Engineers Series B 70, n.º 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Texto completoDuarte-Leiva, Cristian, Sebastián Lorca y Exequiel Mallea-Zepeda. "A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions". Symmetry 13, n.º 8 (26 de julio de 2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Texto completoKocić, Miloš, Živojin Stamenković, Jelena Petrović y Jasmina Bogdanović-Jovanović. "MHD micropolar fluid flow in porous media". Advances in Mechanical Engineering 15, n.º 6 (junio de 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Texto completoHassanien, I. A. "Mixed Convection in Micropolar Boundary-Layer Flow Over a Horizontal Semi-Infinite Plate". Journal of Fluids Engineering 118, n.º 4 (1 de diciembre de 1996): 833–38. http://dx.doi.org/10.1115/1.2835517.
Texto completoSrinivas, J., J. V. Ramana Murthy y Ali J. Chamkha. "Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM". International Journal of Numerical Methods for Heat & Fluid Flow 26, n.º 3/4 (3 de mayo de 2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.
Texto completoTesis sobre el tema "Micropolar fluids equations"
Gumgum, Sevin. "The Dual Reciprocity Boundary Element Method Solution Of Fluid Flow Problems". Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611605/index.pdf.
Texto completoLlerena, Montenegro Henry David. "Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Texto completoThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Mostefai, Mohamed Sadek. "Déduction rigoureuse de l'équation de Reynolds à partir d'un système modélisant l'écoulement à faible épaisseur d'un fluide micropolaire, et étude de deux problèmes à frontière libre : Hele-Shaw généralisé et Stephan à deux phases pour un fluide non newtonien". Saint-Etienne, 1997. http://www.theses.fr/1997STET4019.
Texto completoBENHABOUCHA, Nadia. "Quelques problèmes mathématiques relatifs à la modélisation des conditions aux limites fluide-solide pour des écoulements de faible épaisseur". Phd thesis, Université Claude Bernard - Lyon I, 2003. http://tel.archives-ouvertes.fr/tel-00005482.
Texto completoCapítulos de libros sobre el tema "Micropolar fluids equations"
Simčić, Loredana y Ivan Dražić. "Some Properties of a Generalized Solution for Shear Flow of a Compressible Viscous Micropolar Fluid Model". En Differential and Difference Equations with Applications, 455–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_35.
Texto completoDražić, Ivan. "Homogeneous Boundary Problem for the Compressible Viscous and Heat-Conducting Micropolar Fluid Model with Cylindrical Symmetry". En Differential and Difference Equations with Applications, 79–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_7.
Texto completoDražić, Ivan. "Non-homogeneous Boundary Problems for One-Dimensional Flow of the Compressible Viscous and Heat-Conducting Micropolar Fluid". En Differential and Difference Equations with Applications, 389–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_30.
Texto completoMujaković, N. y N. Črnjarić–Žic. "Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry". En Differential and Difference Equations with Applications, 293–301. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_27.
Texto completoDražić, Ivan y Nermina Mujaković. "Some Properties of a Generalized Solution for 3-D Flow of a Compressible Viscous Micropolar Fluid Model with Spherical Symmetry". En Differential and Difference Equations with Applications, 205–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_19.
Texto completoMerkin, John H., Ioan Pop, Yian Yian Lok y Teodor Grosan. "Basic equations and mathematical methods". En Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, 1–21. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-821188-5.00002-3.
Texto completoConca, C., R. Gormaz, E. Ortega y M. Rojas. "Existence and uniqueness of a strong solution for nonhomogeneous micropolar fluids". En Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV, 213–41. Elsevier, 2002. http://dx.doi.org/10.1016/s0168-2024(02)80012-1.
Texto completoSava, V. Al. "An initial boundary value problem for the equations of plane flow of a micropolar fluid in a time-dependent domain". En Integral methods in science and engineering, 160–64. Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780367812027-32.
Texto completoActas de conferencias sobre el tema "Micropolar fluids equations"
Najafi, A., F. Daneshmand y S. R. Mohebpour. "Analysis of Vibrating Micropolar Plate in Contact With a Fluid". En ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31036.
Texto completoFatunmbi, E. O. y O. O. Akanbi. "Magnetohydrodynamic Flow and Heat Transfer Characteristics in Micropolar-Casson Fluid over a Stretching Surface with Temperature-dependent Material Properties." En 28th iSTEAMS Multidisciplinary Research Conference AIUWA The Gambia. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v28n2p7.
Texto completoMingyang Pan, Xiandong Zhu, Liancun Zheng y Xinhui Si. "Multiple solutions of the micropolar fluid equation in a porous channel". En 2014 ISFMFE - 6th International Symposium on Fluid Machinery and Fluid Engineering. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1228.
Texto completoAl-Sharifi, H. A. M. "Numerical solutions of equations Eyring-Powell micropolar fluid across stretching surface". En INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114694.
Texto completoHazbavi, Abbas y Sajad Sharhani. "Micropolar Fluid Flow Between Two Inclined Parallel Plates". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72528.
Texto completoGhasvari-Jahromi, H., Gh Atefi, A. Moosaie y S. Hormozi. "Analytical Solution of Turbulent Problems Using Governing Equation of Cosserat Continuum Model". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15837.
Texto completo