Artículos de revistas sobre el tema "Microfluidics paper-based analytical device"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Microfluidics paper-based analytical device".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Coltro, Wendell. "Paper-based microfluidics: What can we expect?" Brazilian Journal of Analytical Chemistry 9, n.º 37 (5 de octubre de 2022): 11–13. http://dx.doi.org/10.30744/brjac.2179-3425.point-of-view-wktcoltro.n37.
Texto completoCatalan-Carrio, Raquel, Tugce Akyazi, Lourdes Basabe-Desmonts y Fernando Benito-Lopez. "Predicting Dimensions in Microfluidic Paper Based Analytical Devices". Sensors 21, n.º 1 (26 de diciembre de 2020): 101. http://dx.doi.org/10.3390/s21010101.
Texto completoMeredith, Nathan A., Casey Quinn, David M. Cate, Thomas H. Reilly, John Volckens y Charles S. Henry. "Paper-based analytical devices for environmental analysis". Analyst 141, n.º 6 (2016): 1874–87. http://dx.doi.org/10.1039/c5an02572a.
Texto completoJuang, Yi-Je y Shu-Kai Hsu. "Fabrication of Paper-Based Microfluidics by Spray on Printed Paper". Polymers 14, n.º 3 (8 de febrero de 2022): 639. http://dx.doi.org/10.3390/polym14030639.
Texto completoOzer, Tugba, Catherine McMahon y Charles S. Henry. "Advances in Paper-Based Analytical Devices". Annual Review of Analytical Chemistry 13, n.º 1 (12 de junio de 2020): 85–109. http://dx.doi.org/10.1146/annurev-anchem-061318-114845.
Texto completoLim, Jafry y Lee. "Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices". Molecules 24, n.º 16 (7 de agosto de 2019): 2869. http://dx.doi.org/10.3390/molecules24162869.
Texto completoChannon, Robert B., Michael P. Nguyen, Alexis G. Scorzelli, Elijah M. Henry, John Volckens, David S. Dandy y Charles S. Henry. "Rapid flow in multilayer microfluidic paper-based analytical devices". Lab on a Chip 18, n.º 5 (2018): 793–802. http://dx.doi.org/10.1039/c7lc01300k.
Texto completoLi, Qi, Xingchen Zhou, Qian Wang, Wenfang Liu y Chuanpin Chen. "Microfluidics for COVID-19: From Current Work to Future Perspective". Biosensors 13, n.º 2 (20 de enero de 2023): 163. http://dx.doi.org/10.3390/bios13020163.
Texto completoMentele, Mallory M., Josephine Cunningham, Kirsten Koehler, John Volckens y Charles S. Henry. "Microfluidic Paper-Based Analytical Device for Particulate Metals". Analytical Chemistry 84, n.º 10 (26 de abril de 2012): 4474–80. http://dx.doi.org/10.1021/ac300309c.
Texto completoKugimiya, Akimitsu, Akane Fujikawa, Xiao Jiang, Z. Hugh Fan, Toshikazu Nishida, Jiro Kohda, Yasuhisa Nakano y Yu Takano. "Microfluidic Paper-Based Analytical Device for Histidine Determination". Applied Biochemistry and Biotechnology 192, n.º 3 (27 de junio de 2020): 812–21. http://dx.doi.org/10.1007/s12010-020-03365-z.
Texto completoAmin, Reza, Fariba Ghaderinezhad, Caleb Bridge, Mikail Temirel, Scott Jones, Panteha Toloueinia y Savas Tasoglu. "Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach". Micromachines 11, n.º 6 (24 de junio de 2020): 611. http://dx.doi.org/10.3390/mi11060611.
Texto completoLai, Xiaochen, Yanfei Sun, Mingpeng Yang y Hao Wu. "Rubik’s Cube as Reconfigurable Microfluidic Platform for Rapid Setup and Switching of Analytical Devices". Micromachines 13, n.º 12 (24 de noviembre de 2022): 2054. http://dx.doi.org/10.3390/mi13122054.
Texto completoMännel, Max J., Elif Baysak y Julian Thiele. "Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography". Molecules 26, n.º 9 (10 de mayo de 2021): 2817. http://dx.doi.org/10.3390/molecules26092817.
Texto completoMabbott, Samuel, Syrena C. Fernandes, Monika Schechinger, Gerard L. Cote, Karen Faulds, Charles R. Mace y Duncan Graham. "Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering". Analyst 145, n.º 3 (2020): 983–91. http://dx.doi.org/10.1039/c9an01748h.
Texto completoMeredith, Nathan A., John Volckens y Charles S. Henry. "Paper-based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn(ii) and Co(ii)". Analytical Methods 9, n.º 3 (2017): 534–40. http://dx.doi.org/10.1039/c6ay02798a.
Texto completoPrasad, Alisha, Tiffany Tran y Manas Gartia. "Multiplexed Paper Microfluidics for Titration and Detection of Ingredients in Beverages". Sensors 19, n.º 6 (14 de marzo de 2019): 1286. http://dx.doi.org/10.3390/s19061286.
Texto completoSameenoi, Yupaporn, Pantila Panymeesamer, Natcha Supalakorn, Kirsten Koehler, Orawon Chailapakul, Charles S. Henry y John Volckens. "Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity". Environmental Science & Technology 47, n.º 2 (21 de diciembre de 2012): 932–40. http://dx.doi.org/10.1021/es304662w.
Texto completoJiang, Qingyun, Tingting Han, Haijun Ren, Aziz Ur Rehman Aziz, Na Li, Hangyu Zhang, Zhengyao Zhang y Bo Liu. "Bladder cancer hunting: A microfluidic paper‐based analytical device". ELECTROPHORESIS 41, n.º 16-17 (26 de junio de 2020): 1509–16. http://dx.doi.org/10.1002/elps.202000080.
Texto completoZhang, Yuxin, Tim Cole, Guolin Yun, Yuxing Li, Qianbin Zhao, Hongda Lu, Jiahao Zheng, Weihua Li y Shi-Yang Tang. "Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators". Micromachines 12, n.º 6 (23 de mayo de 2021): 604. http://dx.doi.org/10.3390/mi12060604.
Texto completoHe, Mengyuan y Zhihong Liu. "Paper-Based Microfluidic Device with Upconversion Fluorescence Assay". Analytical Chemistry 85, n.º 24 (5 de diciembre de 2013): 11691–94. http://dx.doi.org/10.1021/ac403693g.
Texto completoBleul, Regina, Marion Ritzi-Lehnert, Julian Höth, Nico Scharpfenecker, Ines Frese, Dominik Düchs, Sabine Brunklaus, Thomas E. Hansen-Hagge, Franz-Josef Meyer-Almes y Klaus S. Drese. "Compact, cost-efficient microfluidics-based stopped-flow device". Analytical and Bioanalytical Chemistry 399, n.º 3 (30 de noviembre de 2010): 1117–25. http://dx.doi.org/10.1007/s00216-010-4446-5.
Texto completoHassan, Sammer-ul y Xunli Zhang. "Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review". Current Analytical Chemistry 16, n.º 1 (8 de enero de 2020): 41–51. http://dx.doi.org/10.2174/1573411015666181224145845.
Texto completoZhou, Cai Bin, Yun Zhang, Shang Wang Le, Jin Fang Nie, Ting Zhang, Fang Liu y Jian Ping Li. "Fabrication of Paper-Based Microfluidics by Single-Step Wax Printing for Portable Multianalyte Bioassays". Advanced Materials Research 881-883 (enero de 2014): 503–8. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.503.
Texto completoAtabakhsh, Saeed, Zahra Latifi Namin y Shahin Jafarabadi Ashtiani. "Paper-based resistive heater with accurate closed-loop temperature control for microfluidics paper-based analytical devices". Microsystem Technologies 24, n.º 9 (7 de abril de 2018): 3915–24. http://dx.doi.org/10.1007/s00542-018-3891-5.
Texto completoRamana, Lakshmi Narashimhan, Santosh S. Mathapati, Nitin Salvi, M. V. Khadilkar, Anita Malhotra, Vishal Santra y Tarun Kumar Sharma. "A paper microfluidic device based colorimetric sensor for the detection and discrimination of elapid versus viper envenomation". Analyst 147, n.º 4 (2022): 685–94. http://dx.doi.org/10.1039/d1an01698a.
Texto completoEvard, Hanno, Hans Priks, Indrek Saar, Heili Aavola, Tarmo Tamm y Ivo Leito. "A New Direction in Microfluidics: Printed Porous Materials". Micromachines 12, n.º 6 (8 de junio de 2021): 671. http://dx.doi.org/10.3390/mi12060671.
Texto completoBuser, Joshua R., Samantha A. Byrnes, Caitlin E. Anderson, Arielle J. Howell, Peter C. Kauffman, Joshua D. Bishop, Maxwell H. Wheeler, Sujatha Kumar y Paul Yager. "Understanding partial saturation in paper microfluidics enables alternative device architectures". Analytical Methods 11, n.º 3 (2019): 336–45. http://dx.doi.org/10.1039/c8ay01977k.
Texto completoZhang, Lina, Yanhu Wang, Chao Ma, Panpan Wang y Mei Yan. "Self-powered sensor for Hg2+detection based on hollow-channel paper analytical devices". RSC Advances 5, n.º 31 (2015): 24479–85. http://dx.doi.org/10.1039/c4ra14154g.
Texto completoKim, Uihwan, Byeolnim Oh, Jiyeon Ahn, Sangwook Lee y Younghak Cho. "Inertia–Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation". Sensors 22, n.º 13 (22 de junio de 2022): 4709. http://dx.doi.org/10.3390/s22134709.
Texto completoTemirel, Mikail, Sajjad Rahmani Dabbagh y Savas Tasoglu. "Hemp-Based Microfluidics". Micromachines 12, n.º 2 (12 de febrero de 2021): 182. http://dx.doi.org/10.3390/mi12020182.
Texto completoDavic, Andrew y Michael Cascio. "Development of a Microfluidic Platform for Trace Lipid Analysis". Metabolites 11, n.º 3 (24 de febrero de 2021): 130. http://dx.doi.org/10.3390/metabo11030130.
Texto completoJiang, Yan, Zhenxia Hao, Qiaohong He y Hengwu Chen. "A simple method for fabrication of microfluidic paper-based analytical devices and on-device fluid control with a portable corona generator". RSC Advances 6, n.º 4 (2016): 2888–94. http://dx.doi.org/10.1039/c5ra23470k.
Texto completoCate, David M., Scott D. Noblitt, John Volckens y Charles S. Henry. "Multiplexed paper analytical device for quantification of metals using distance-based detection". Lab on a Chip 15, n.º 13 (2015): 2808–18. http://dx.doi.org/10.1039/c5lc00364d.
Texto completoRaj, Nikhil, Victor Breedveld y Dennis W. Hess. "Flow control in fully enclosed microfluidics paper based analytical devices using plasma processes". Sensors and Actuators B: Chemical 320 (octubre de 2020): 128606. http://dx.doi.org/10.1016/j.snb.2020.128606.
Texto completoKudo, Hiroko, Kento Maejima, Yuki Hiruta y Daniel Citterio. "Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin". SLAS TECHNOLOGY: Translating Life Sciences Innovation 25, n.º 1 (28 de octubre de 2019): 47–57. http://dx.doi.org/10.1177/2472630319884031.
Texto completoRosenfeld, Tally y Moran Bercovici. "1000-fold sample focusing on paper-based microfluidic devices". Lab Chip 14, n.º 23 (2014): 4465–74. http://dx.doi.org/10.1039/c4lc00734d.
Texto completoWeng, Xuan y Suresh Neethirajan. "Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device". Microchimica Acta 184, n.º 11 (11 de septiembre de 2017): 4545–52. http://dx.doi.org/10.1007/s00604-017-2467-x.
Texto completoYoung, Katherine M., Peter G. Shankles, Theresa Chen, Kelly Ahkee, Sydney Bules y Todd Sulchek. "Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets". Biomicrofluidics 16, n.º 3 (mayo de 2022): 034104. http://dx.doi.org/10.1063/5.0080510.
Texto completoPesaran, Shiva, Elmira Rafatmah y Bahram Hemmateenejad. "An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics". Biosensors 11, n.º 2 (10 de febrero de 2021): 44. http://dx.doi.org/10.3390/bios11020044.
Texto completoYamada, Kentaro, Hiroyuki Shibata, Koji Suzuki y Daniel Citterio. "Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges". Lab on a Chip 17, n.º 7 (2017): 1206–49. http://dx.doi.org/10.1039/c6lc01577h.
Texto completoFerreira, Francisca T. S. M., Karina A. Catalão, Raquel B. R. Mesquita y António O. S. S. Rangel. "New microfluidic paper-based analytical device for iron determination in urine samples". Analytical and Bioanalytical Chemistry 413, n.º 30 (15 de octubre de 2021): 7463–72. http://dx.doi.org/10.1007/s00216-021-03706-9.
Texto completoJayawardane, B. Manori, Shen Wei, Ian D. McKelvie y Spas D. Kolev. "Microfluidic Paper-Based Analytical Device for the Determination of Nitrite and Nitrate". Analytical Chemistry 86, n.º 15 (7 de julio de 2014): 7274–79. http://dx.doi.org/10.1021/ac5013249.
Texto completoWang, Yanhu, Shoumei Wang, Shenguang Ge, Shaowei Wang, Mei Yan, Dejin Zang y Jinghua Yu. "Ultrasensitive chemiluminescence detection of DNA on a microfluidic paper-based analytical device". Monatshefte für Chemie - Chemical Monthly 145, n.º 1 (14 de mayo de 2013): 129–35. http://dx.doi.org/10.1007/s00706-013-0971-1.
Texto completoRattanarat, Poomrat, Wijitar Dungchai, David M. Cate, Weena Siangproh, John Volckens, Orawon Chailapakul y Charles S. Henry. "A microfluidic paper-based analytical device for rapid quantification of particulate chromium". Analytica Chimica Acta 800 (octubre de 2013): 50–55. http://dx.doi.org/10.1016/j.aca.2013.09.008.
Texto completoTaghizadeh-Behbahani, Maryam, Bahram Hemmateenejad y Mojtaba Shamsipur. "Colorimetric determination of acidity constant using a paper-based microfluidic analytical device". Chemical Papers 72, n.º 5 (12 de diciembre de 2017): 1239–47. http://dx.doi.org/10.1007/s11696-017-0357-7.
Texto completoKim, Dami, SeJin Kim y Sanghyo Kim. "An innovative blood plasma separation method for a paper-based analytical device using chitosan functionalization". Analyst 145, n.º 16 (2020): 5491–99. http://dx.doi.org/10.1039/d0an00500b.
Texto completoRosenfeld, Tally y Moran Bercovici. "Amplification-free detection of DNA in a paper-based microfluidic device using electroosmotically balanced isotachophoresis". Lab on a Chip 18, n.º 6 (2018): 861–68. http://dx.doi.org/10.1039/c7lc01250k.
Texto completoLiu, Yu-Ci, Chia-Hui Hsu, Bing-Jyun Lu, Peng-Yi Lin y Mei-Lin Ho. "Determination of nitrite ions in environment analysis with a paper-based microfluidic device". Dalton Transactions 47, n.º 41 (2018): 14799–807. http://dx.doi.org/10.1039/c8dt02960a.
Texto completoMorbioli, Giorgio Gianini, Thiago Mazzu-Nascimento, Luis Aparecido Milan, Amanda M. Stockton y Emanuel Carrilho. "Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design". Analytical Chemistry 89, n.º 9 (19 de abril de 2017): 4786–92. http://dx.doi.org/10.1021/acs.analchem.6b04953.
Texto completoFarasat, Malihe, Ehsan Aalaei, Saeed Kheirati Ronizi, Atin Bakhshi, Shaghayegh Mirhosseini, Jun Zhang, Nam-Trung Nguyen y Navid Kashaninejad. "Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation". Biosensors 12, n.º 7 (11 de julio de 2022): 510. http://dx.doi.org/10.3390/bios12070510.
Texto completo