Artículos de revistas sobre el tema "Microelectromechanical systems"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Microelectromechanical systems.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Microelectromechanical systems".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Gabriel, K. J. "Microelectromechanical systems". Proceedings of the IEEE 86, n.º 8 (1998): 1534–35. http://dx.doi.org/10.1109/5.704257.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mehregany, M. "Microelectromechanical systems". IEEE Circuits and Devices Magazine 9, n.º 4 (julio de 1993): 14–22. http://dx.doi.org/10.1109/101.250229.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MacDonald, Noel C. "SCREAM MicroElectroMechanical Systems". Microelectronic Engineering 32, n.º 1-4 (septiembre de 1996): 49–73. http://dx.doi.org/10.1016/0167-9317(96)00007-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Vasylenko, Mykola y Maksym Mahas. "Microelectromechanical Gyrovertical". Electronics and Control Systems 1, n.º 71 (27 de junio de 2022): 16–21. http://dx.doi.org/10.18372/1990-5548.71.16818.

Texto completo
Resumen
Gyroscopic verticals (gyroverticals) are designed to determine the direction of the true vertical on moving objects. Being one of the devices of the orientation system of a moving object, they are used as sensors for the roll and pitch angles of an aircraft (or sensors of similar angles for other moving objects) and serve to create a platform stabilized in the horizon plane on a moving object. The electrical signals taken from the measuring axes of the device are used in flight, navigation, radar systems, visual indicators, etc. Gyroscopic stabilization systems are widely used as the basis of integrated management systems on aircraft and miniature unmanned aerial vehicles for generating signals proportional to the angular deviations of the aircraft in space in terms of roll and pitch angles and for stabilizing and controlling the position in space of optical equipment. At present, sensors based on the technologies of microelectromechanical systems are widely used in small aircraft. Their important advantage is small weight and size characteristics, and the main disadvantage is low accuracy. Such sensors are used in navigation systems and automatic control systems of aircraft. In particular, algorithms for calculating the orientation angles of an unmanned aerial vehicle are known, using information from microelectromechanical angular velocity sensors. However, due to large drifts, an error accumulates in time and, as a result, the operating time is limited.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bhat, K. N. "Micromachining for Microelectromechanical Systems". Defence Science Journal 48, n.º 1 (1 de enero de 1998): 5–19. http://dx.doi.org/10.14429/dsj.48.3863.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kal, Santiram. "Microelectromechanical Systems and Microsensors". Defence Science Journal 57, n.º 3 (23 de mayo de 2007): 209–24. http://dx.doi.org/10.14429/dsj.57.1762.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gupta, Amita. "Advances in Microelectromechanical Systems". Defence Science Journal 59, n.º 6 (24 de noviembre de 2009): 555–56. http://dx.doi.org/10.14429/dsj.59.1579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Louizos, Louizos-Alexandros, Panagiotis G. Athanasopoulos y Kevin Varty. "Microelectromechanical Systems and Nanotechnology". Vascular and Endovascular Surgery 46, n.º 8 (8 de octubre de 2012): 605–9. http://dx.doi.org/10.1177/1538574412462637.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kristo, Blaine, Joseph C. Liao, Hercules P. Neves, Bernard M. Churchill, Carlo D. Montemagno y Peter G. Schulam. "Microelectromechanical systems in urology". Urology 61, n.º 5 (mayo de 2003): 883–87. http://dx.doi.org/10.1016/s0090-4295(03)00032-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

(Rich) Pryputniewicz, R. J. "Progress in Microelectromechanical Systems". Strain 43, n.º 1 (febrero de 2007): 13–25. http://dx.doi.org/10.1111/j.1475-1305.2007.00303.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Packard, Corinne E., Apoorva Murarka, Eric W. Lam, Martin A. Schmidt y Vladimir Bulović. "Contact-Printed Microelectromechanical Systems". Advanced Materials 22, n.º 16 (22 de abril de 2010): 1840–44. http://dx.doi.org/10.1002/adma.200903034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ansorge, Erik, Bertram Schmidt, Jan Sauerwald y Holger Fritze. "Langasite for microelectromechanical systems". physica status solidi (a) 208, n.º 2 (23 de septiembre de 2010): 377–89. http://dx.doi.org/10.1002/pssa.201026508.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sonetha, Vaibhavi, Poorvi Agarwal, Smeet Doshi, Ridhima Kumar y Bhavya Mehta. "Microelectromechanical Systems in Medicine". Journal of Medical and Biological Engineering 37, n.º 4 (19 de junio de 2017): 580–601. http://dx.doi.org/10.1007/s40846-017-0265-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Fechan, Andriy, Yuriy Khoverko, Vladyslav Dalyavskii y Taras Dyhdalovych. "Visualization of color label sensors in microelectromechanical systems". Computational Problems of Electrical Engineering 13, n.º 2 (15 de diciembre de 2023): 9–14. http://dx.doi.org/10.23939/jcpee2023.02.009.

Texto completo
Resumen
The article presents the design and technological features of creating color labels-sensors of microelectromechanical systems intended for monitoring physicochemical parameters under the conditions of high- level electromagnetic interference. The software module of the hardware and software complex for the visualization of spectral intensity by converting it into an RGB colour model has been created. The algorithm for carrying out the procedure for calculating the color rendering index is shown and the main parameters of temperature colors in a wide range of visible radiation waves are determined
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Xu, L., C. Zhu y L. Qin. "Microelectromechanical coupled dynamics". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, n.º 10 (1 de octubre de 2006): 1589–600. http://dx.doi.org/10.1243/09544062jmes134.

Texto completo
Resumen
In this paper, a continuous body, electromechanical coupled dynamic model of the micro ring, in an electrical field has been presented and its equations of motion have been given. From the analysis of the system's energy, the electromechanical coupled force has been obtained. The non-linear electromechanical coupled dynamic equations has been linearized and by means of the linear equations, the natural frequencies and vibration modes of the micro ring have been investigated. The dynamic responses of the electrical system and its changes, along with its system parameters have been investigated. These results are useful in the design and manufacture of microelectromechanical systems and can offer some reference for nanomachines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Adeosun, Oluwatosin. "Microelectromechanical Systems Lab Simulation Tool". Journal of Purdue Undergraduate Research 4, n.º 1 (12 de agosto de 2014): 74–75. http://dx.doi.org/10.5703/1288284315436.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Liqin, Liu, Tang You Gang y Wu Zhiqiang. "Nonlinear Dynamics of Microelectromechanical Systems". Journal of Vibration and Control 12, n.º 1 (enero de 2006): 57–65. http://dx.doi.org/10.1177/1077546306061127.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Bustillo, J. M., R. T. Howe y R. S. Muller. "Surface micromachining for microelectromechanical systems". Proceedings of the IEEE 86, n.º 8 (1998): 1552–74. http://dx.doi.org/10.1109/5.704260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Polla, D. L. y P. J. Schiller. "Integrated ferroelectric microelectromechanical systems (MEMS)". Integrated Ferroelectrics 7, n.º 1-4 (febrero de 1995): 359–70. http://dx.doi.org/10.1080/10584589508220246.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mehregany, M., C. A. Zorman, S. Roy, A. J. Fleischman y N. Rajan. "Silicon carbide for microelectromechanical systems". International Materials Reviews 45, n.º 3 (marzo de 2000): 85–108. http://dx.doi.org/10.1179/095066000101528322.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Zhou, Shu-Ang. "On forces in microelectromechanical systems". International Journal of Engineering Science 41, n.º 3-5 (marzo de 2003): 313–35. http://dx.doi.org/10.1016/s0020-7225(02)00207-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Biasotti, M., L. Pellegrino, E. Bellingeri, C. Bernini, A. S. Siri y D. Marrè. "All-Oxide Crystalline Microelectromechanical systems". Procedia Chemistry 1, n.º 1 (septiembre de 2009): 839–42. http://dx.doi.org/10.1016/j.proche.2009.07.209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Soper, Steven A., Sean M. Ford, Shize Qi, Robin L. McCarley, Kevin Kelly y Michael C. Murphy. "Peer Reviewed: Polymeric Microelectromechanical Systems." Analytical Chemistry 72, n.º 19 (octubre de 2000): 642 A—651 A. http://dx.doi.org/10.1021/ac0029511.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bao, Minhang y Weiyuan Wang. "Future of microelectromechanical systems (MEMS)". Sensors and Actuators A: Physical 56, n.º 1-2 (agosto de 1996): 135–41. http://dx.doi.org/10.1016/0924-4247(96)01274-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Latif, Rhonira, Enrico Mastropaolo, Andy Bunting, Rebecca Cheung, Thomas Koickal, Alister Hamilton, Michael Newton y Leslie Smith. "Microelectromechanical systems for biomimetical applications". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, n.º 6 (noviembre de 2010): C6N1—C6N6. http://dx.doi.org/10.1116/1.3504892.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Seppa, H., J. Kyynarainen y A. Oja. "Microelectromechanical systems in electrical metrology". IEEE Transactions on Instrumentation and Measurement 50, n.º 2 (abril de 2001): 440–44. http://dx.doi.org/10.1109/19.918161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chircov, Cristina y Alexandru Mihai Grumezescu. "Microelectromechanical Systems (MEMS) for Biomedical Applications". Micromachines 13, n.º 2 (22 de enero de 2022): 164. http://dx.doi.org/10.3390/mi13020164.

Texto completo
Resumen
The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for fulfilling tasks normally carried out by macroscopic systems. Although their presence is found throughout all the aspects of daily life, recent years have witnessed countless research works involving the application of MEMS within the biomedical field, especially in drug synthesis and delivery, microsurgery, microtherapy, diagnostics and prevention, artificial organs, genome synthesis and sequencing, and cell manipulation and characterization. Their tremendous potential resides in the advantages offered by their reduced size, including ease of integration, lightweight, low power consumption, high resonance frequency, the possibility of integration with electrical or electronic circuits, reduced fabrication costs due to high mass production, and high accuracy, sensitivity, and throughput. In this context, this paper aims to provide an overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications, which have evolved in the past years.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hartzell, Allyson. "Optical microelectromechanical systems: designing for reliability". Journal of Micro/Nanolithography, MEMS, and MOEMS 6, n.º 3 (1 de julio de 2007): 033010. http://dx.doi.org/10.1117/1.2775458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Yang, Yisong, Ruifeng Zhang y Le Zhao. "Dynamics of electrostatic microelectromechanical systems actuators". Journal of Mathematical Physics 53, n.º 2 (febrero de 2012): 022703. http://dx.doi.org/10.1063/1.3684748.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Lee, Y. C., B. A. Parviz, J. A. Chiou y S. Chen. "Packaging for microelectromechanical and nanoelectromechanical systems". IEEE Transactions on Advanced Packaging 26, n.º 3 (agosto de 2003): 217–26. http://dx.doi.org/10.1109/tadvp.2003.817973.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Elko, Gary W. "Small directional microelectromechanical systems microphone arrays". Journal of the Acoustical Society of America 133, n.º 5 (mayo de 2013): 3317. http://dx.doi.org/10.1121/1.4805527.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Griggio, F., H. Kim, S. O. Ural, T. N. Jackson, K. Choi, R. L. Tutwiler y S. Trolier-Mckinstry. "Medical Applications of Piezoelectric Microelectromechanical Systems". Integrated Ferroelectrics 141, n.º 1 (enero de 2013): 169–86. http://dx.doi.org/10.1080/10584587.2012.694741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bryzek, J., A. Flannery y D. Skurnik. "Integrating microelectromechanical systems with integrated circuits". IEEE Instrumentation & Measurement Magazine 7, n.º 2 (junio de 2004): 51–59. http://dx.doi.org/10.1109/mim.2004.1304566.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Anscombe, N. "Good things, small packages [microelectromechanical systems]". Manufacturing Engineer 83, n.º 3 (1 de junio de 2004): 10–13. http://dx.doi.org/10.1049/me:20040301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Riddle, A. "Nano- and microelectromechanical systems [Book Review]". IEEE Microwave Magazine 2, n.º 4 (diciembre de 2001): 84–85. http://dx.doi.org/10.1109/mmw.2001.969938.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Khuri‐Yakub, B. T. "Smart structures and microelectromechanical systems (MEMS)". Journal of the Acoustical Society of America 106, n.º 4 (octubre de 1999): 2233. http://dx.doi.org/10.1121/1.427599.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Maluf, Nadim. "An Introduction to Microelectromechanical Systems Engineering". Measurement Science and Technology 13, n.º 2 (16 de enero de 2002): 229. http://dx.doi.org/10.1088/0957-0233/13/2/701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Tadigadapa, Srinivas. "Piezoelectric microelectromechanical systems — challenges and opportunities". Procedia Engineering 5 (2010): 468–71. http://dx.doi.org/10.1016/j.proeng.2010.09.148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Freidhoff, C. B., R. M. Young, S. Sriram, T. T. Braggins, T. W. O'Keefe, J. D. Adam, H. C. Nathanson et al. "Chemical sensing using nonoptical microelectromechanical systems". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, n.º 4 (julio de 1999): 2300–2307. http://dx.doi.org/10.1116/1.581764.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gall, K., P. Kreiner, D. Turner y M. Hulse. "Shape-Memory Polymers for Microelectromechanical Systems". Journal of Microelectromechanical Systems 13, n.º 3 (junio de 2004): 472–83. http://dx.doi.org/10.1109/jmems.2004.828727.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Ezawa, Motohiko. "Topological microelectromechanical systems". Physical Review B 103, n.º 15 (26 de abril de 2021). http://dx.doi.org/10.1103/physrevb.103.155425.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, n.º 2 (abril de 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3063826.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Chu, V., J. Gaspar y J. P. Conde. "Thin Film Microelectromechanical Systems". MRS Proceedings 715 (2002). http://dx.doi.org/10.1557/proc-715-a12.3.

Texto completo
Resumen
AbstractThis paper presents the fabrication and characterization of MEMS structures on glass substrates using thin film silicon technology and surface micromachining. The technology developed to process bridge and cantilever structures as well as the electromechanical characterization of these structures is discussed. This technology can enable the expansion of MEMS to applications requiring large area and/or flexible substrates. The main results for the characterization of the movement of the structures are as follows: (1) in the quasi-DC regime and at low applied voltages, the response is linear with the applied dc voltage. Using an electromechanical model which takes into account the constituent materials and geometry of the bilayer, it is possible to extract the deflection of the structures. This estimate suggests that it is possible to control the actuation of these structures to deflections on the sub-nanometric scale; (2) resonance frequencies of up to 20 MHz have been measured on hydrogenated amorphous silicon (a-Si:H) bridge structures with quality factors (Q) of 70-100 in air. The frequency depends inversely on the square of the structure length, as predicted by the mechanical model; and (3) using an integrated permanent magnet/magnetic sensor system, it is possible to measure the structure movement on-chip and to obtain an absolute calibration of the deflection of the structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, n.º 1 (febrero de 2021): C2. http://dx.doi.org/10.1109/jmems.2020.3038296.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 31, n.º 4 (agosto de 2022): C2. http://dx.doi.org/10.1109/jmems.2022.3189490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 31, n.º 3 (junio de 2022): C2. http://dx.doi.org/10.1109/jmems.2022.3172163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, n.º 6 (diciembre de 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3123770.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, n.º 3 (junio de 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3077790.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, n.º 4 (agosto de 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3095642.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 31, n.º 2 (abril de 2022): C2. http://dx.doi.org/10.1109/jmems.2022.3158710.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía