Artículos de revistas sobre el tema "Microcapsulated phase change materials"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Microcapsulated phase change materials.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Microcapsulated phase change materials".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zhang, Hui, Yeting Shi, Baoqing Shentu y Zhixue Weng. "Synthesis and Thermal Performance of Polyurea Microcapsulated Phase Change Materials by Interfacial Polymerization". Polymer Science, Series B 59, n.º 6 (noviembre de 2017): 689–96. http://dx.doi.org/10.1134/s1560090417060124.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Hao, Jie Luo, Yanyang Yang, Liang Zhao, Guolin Song y Guoyi Tang. "Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance". Solar Energy 139 (diciembre de 2016): 591–98. http://dx.doi.org/10.1016/j.solener.2016.10.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Park, Ji-Won, Jae-Ho Shin, Gyu-Seong Shim, Kyeng-Bo Sim, Seong-Wook Jang y Hyun-Joong Kim. "Mechanical Strength Enhancement of Polylactic Acid Hybrid Composites". Polymers 11, n.º 2 (17 de febrero de 2019): 349. http://dx.doi.org/10.3390/polym11020349.

Texto completo
Resumen
In recent years, there has been an increasing need for materials that are environmentally friendly and have functional properties. Polylactic acid (PLA) is a biomass-based polymer, which has attracted research attention as an eco-friendly material. Various studies have been conducted on functionality imparting and performance improvement to extend the field of application of PLA. Particularly, research on natural fiber-reinforced composites have been conducted to simultaneously improve their environmental friendliness and mechanical strength. Research interest in hybrid composites using two or more fillers to realize multiple functions are also increasing. Phase change materials (PCMs) absorb and emit energy through phase transition and can be used as a micro encapsulated structure. In this study, we fabricated hybrid composites using microcapsulated PCM (MPCM) and the natural fibrous filler, kenaf. We aimed to fabricate a composite material with improved endothermic characteristics, mechanical performance, and environmental friendliness. We analyzed the endothermic properties of MPCM and the structural characteristics of two fillers and finally produced an eco-friendly composite material. The PCM and kenaf contents were varied to observe changes in the performance of the hybrid composites. The endothermic properties were determined through differential scanning calorimetry, whereas changes in the physical properties of the hybrid composite were determined by measuring the mechanical properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Goel, Manish, S. K. Roy y S. Sengupta. "Laminar forced convection heat transfer in microcapsulated phase change material suspensions". International Journal of Heat and Mass Transfer 37, n.º 4 (marzo de 1994): 593–604. http://dx.doi.org/10.1016/0017-9310(94)90131-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Jian, Liang Wang, Yu Jie Xu, Yi Fei Wang, Zheng Yang y Hai Sheng Chen. "Natural Convective Heat Transfer Characteristics of the Bundle Heat Exchanger in the Latent Heat Microcapsulated Phase Change Material Slurry". Materials Science Forum 852 (abril de 2016): 969–76. http://dx.doi.org/10.4028/www.scientific.net/msf.852.969.

Texto completo
Resumen
As a novel latent functionally thermal fluid, microcapsulated phase change material slurry (MPCMS) has many potential applications in the fields of energy storage, air-conditioning, refrigeration and heat exchanger, etc. In order to investigate the heat storage and heat transfer performance of MPCMS, natural convection in a rectangular enclosure heated by bundle heat exchanger has been studied numerically in this paper. The effects of mass concentration (Cm) of MPCMS, the vertical spaces of bundle heat exchanger on the natural convective heat transfer are investigated. The results indicate that, MPCMS with Cm=30% shows the best natural convectionperformance, and a lower position of bundle heat exchanger can strengthen the natural convection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

INABA, Hideo, Chuanshan DAI y Akihiko HORIBE. "303 Natural Convection of Microcapsulated Phase Change Slurry Layer with Heating from the Bottom and Cooling from the Top". Proceedings of Conference of Chugoku-Shikoku Branch 2001.39 (2001): 85–86. http://dx.doi.org/10.1299/jsmecs.2001.39.85.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Raoux, Simone, Feng Xiong, Matthias Wuttig y Eric Pop. "Phase change materials and phase change memory". MRS Bulletin 39, n.º 8 (agosto de 2014): 703–10. http://dx.doi.org/10.1557/mrs.2014.139.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Raoux, Simone, Daniele Ielmini, Matthias Wuttig y Ilya Karpov. "Phase change materials". MRS Bulletin 37, n.º 2 (febrero de 2012): 118–23. http://dx.doi.org/10.1557/mrs.2011.357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

FLEURY, ALFRED F. "Phase-Change Materials". Heat Transfer Engineering 17, n.º 2 (abril de 1996): 72–74. http://dx.doi.org/10.1080/01457639608939875.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Raoux, Simone. "Phase Change Materials". Annual Review of Materials Research 39, n.º 1 (agosto de 2009): 25–48. http://dx.doi.org/10.1146/annurev-matsci-082908-145405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Arman Kandirmaz, Emine, Arif Ozcan y Duygu Er Ulusoy. "Production of thermochromic microcapsulated inks for smart packaging and examination of printability properties". Pigment & Resin Technology 49, n.º 4 (25 de abril de 2020): 273–81. http://dx.doi.org/10.1108/prt-12-2019-0116.

Texto completo
Resumen
Purpose Stimulant-sensitive materials exhibit physical or chemical reversible changes in their properties as a result of environmental variables. One of these materials is thermochromic materials. Materials with thermochromic sensitivity change their color with heat exchange. For this reason, it can be used in many different fields such as security inks. Such substances decompose rapidly by being affected by weather conditions. Furthermore, the particle sizes are larger than normal pigments, and therefore, it is difficult to stabilize thermochromic dyes. Because of all these adverse conditions, thermochromic colorants must be protected before use in the ink. This protection is planned to be provided by the microcapsulation technique. The purpose of this study is to determine the thermochromic printing inks that can be stored stably by microcapsulation technique, to protect it from environmental conditions and the determination of printability parameters. Design/methodology/approach In this study, capsules with a core material of thermochromic dyeing with polyurea formaldehyde (PUF) or poly-phenolmelamine formaldehyde (PMF) shell were synthesized at appropriate pH and temperature using the appropriate solvent and mixing speed. The chemical structure and dimensions of the obtained capsules were examined by ATR-FTIR and scanning electron microscopy, respectively. The produced thermochromic microcapsules were mixed with alkyd resin and mineral oil and screen printing ink was obtained. Printability tests such as surface morphology, color, gloss and light fastness were applied. Findings As a result, it was determined that PMF is not a suitable encapsulation technique for thermochromic dyes under suitable conditions and eliminates thermochromic property by providing heat stability. It was found that PUF microcapsulation can be used in thermochromic dyestuff encapsulation and does not lose the thermochromic property. It has also been found that PUF microcapsules increase the lightfastness and stability of thermochromic dye ink. Originality/value This study provides experimental research on the encapsulation of a thermochromic dye and its use in ink.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Park, Sung-Jin, In-Soo Kim, Sang-Kyun Kim y Se-Young Choi. "Phase Change Characteristics of Sb-Based Phase Change Materials". Korean Journal of Materials Research 18, n.º 2 (25 de febrero de 2008): 61–64. http://dx.doi.org/10.3740/mrsk.2008.18.2.061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Rodenbach, Peter, Raffaella Calarco, Karthick Perumal, Ferhat Katmis, Michael Hanke, André Proessdorf, Wolfgang Braun et al. "Epitaxial phase-change materials". physica status solidi (RRL) - Rapid Research Letters 6, n.º 11 (22 de octubre de 2012): 415–17. http://dx.doi.org/10.1002/pssr.201206387.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lu, Li Bing, Jing Wang, Meng Gao y Dong Li. "Slope Effect of Phase Change Materials in Phase Change Roof". Advanced Materials Research 671-674 (marzo de 2013): 1835–38. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1835.

Texto completo
Resumen
Under summer climatic features of Daqing area in China, numerical simulation on the unsteady heat transfer characteristic of phase change roof was investigated, considering direct influence of solar radiation. The main influencing factor of roof slope in the phase change roof was analyzed in this paper. The results show that, increasing the roof slope is beneficial to promote the effect of heat-insulating and temperature-reducing of phase change roof, whereas the extent of the ascension is weak. Different slopes in roof structure have basically no influence on the delay effect.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Krebs, Daniel, Simone Raoux, Charles T. Rettner, Geoffrey W. Burr, Robert M. Shelby, Martin Salinga, C. Michael Jefferson y Matthias Wuttig. "Characterization of phase change memory materials using phase change bridge devices". Journal of Applied Physics 106, n.º 5 (septiembre de 2009): 054308. http://dx.doi.org/10.1063/1.3183952.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

SONG, ZhiTang, LiangCai WU, Feng RAO, SongLin FENG y XiLin ZHOU. "Study of phase change materials for phase change random access memory". SCIENTIA SINICA Physica, Mechanica & Astronomica 46, n.º 10 (6 de septiembre de 2016): 107309. http://dx.doi.org/10.1360/sspma2016-00216.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Yamada, Noboru. "Erasable Phase-Change Optical Materials". MRS Bulletin 21, n.º 9 (septiembre de 1996): 48–50. http://dx.doi.org/10.1557/s0883769400036368.

Texto completo
Resumen
Almost all stones on a lane will become glassy if they are melted and quenched. They will become transparent and quite different in appearance from before vitrification. This visible change constitutes the recording of information. We might refer to the stone as “1 bit.” If the vitrified stone is subsequently kept at a high temperature under its melting point, it will lose its transparency and turn back to the appearance it had before melting and quenching. Thus the “1 bit” is erased. This is the simple mechanism of an erasable phase-change optical memory. In practical systems, a laser beam focused into a diffraction-limited spot is used for recording. This enables the spatial size of the “1 bit” to be very small (of submicron order) so that the recording density is very high.Figure 1 shows a transmission-electron-microscope (TEM) photograph of an actual optical disk. The elliptical smooth areas are recording marks in the amorphous state that were formed by high-power and short-duration laser irradiation. The shortest mark length is about 0.5 μm. The area surrounding the amorphous marks is in the crystalline state and consists of small grains. The two states differ from each other in optical properties such as refractive indices and optical absorption coefficients. Accordingly when the bits are illuminated with low-intensity laser light, the reflected light from the amorphous and crystalline regions is different and may be detected as information signals.The amorphous marks are erased by heating above the glass-transition temperature by laser irradiation, but with lower power than is used in the case of recording.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Piarristeguy, Andrea, Annie Pradel y Jean-Yves Raty. "Phase-change materials and rigidity". MRS Bulletin 42, n.º 01 (enero de 2017): 45–49. http://dx.doi.org/10.1557/mrs.2016.302.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Liu, Kai y Zhiting Tian. "Advances in phase-change materials". Journal of Applied Physics 130, n.º 7 (21 de agosto de 2021): 070401. http://dx.doi.org/10.1063/5.0064189.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Caldwell, Marissa A., Rakesh Gnana David Jeyasingh, H. S. Philip Wong y Delia J. Milliron. "Nanoscale phase change memory materials". Nanoscale 4, n.º 15 (2012): 4382. http://dx.doi.org/10.1039/c2nr30541k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Zhou, Xilin, Liangcai Wu, Zhitang Song, Feng Rao, Kun Ren, Cheng Peng, Sannian Song, Bo Liu, Ling Xu y Songlin Feng. "Phase transition characteristics of Al-Sb phase change materials for phase change memory application". Applied Physics Letters 103, n.º 7 (12 de agosto de 2013): 072114. http://dx.doi.org/10.1063/1.4818662.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Raoux, Simone, Cyril Cabral, Lia Krusin-Elbaum, Jean L. Jordan-Sweet, Kumar Virwani, Martina Hitzbleck, Martin Salinga, Anita Madan y Teresa L. Pinto. "Phase transitions in Ge–Sb phase change materials". Journal of Applied Physics 105, n.º 6 (15 de marzo de 2009): 064918. http://dx.doi.org/10.1063/1.3091271.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kohary, Krisztian y C. David Wright. "Modelling the phase-transition in phase-change materials". physica status solidi (b) 250, n.º 5 (20 de marzo de 2013): 944–48. http://dx.doi.org/10.1002/pssb.201248584.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Cabeza, Luisa F., Gabriel Zsembinszki y Marc Martín. "Evaluation of volume change in phase change materials during their phase transition". Journal of Energy Storage 28 (abril de 2020): 101206. http://dx.doi.org/10.1016/j.est.2020.101206.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hu, Chi, Lishan Sha, Chongxing Huang, Wanru Luo, Bo Li, Haohe Huang, Chenglong Xu y Kaikai Zhang. "Phase change materials in food: Phase change temperature, environmental friendliness, and systematization". Trends in Food Science & Technology 140 (octubre de 2023): 104167. http://dx.doi.org/10.1016/j.tifs.2023.104167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Gaspard, Jean-Pierre. "Vanishing‐Harmonicity and Phase‐Change Materials". physica status solidi (RRL) – Rapid Research Letters 15, n.º 3 (24 de febrero de 2021): 2000536. http://dx.doi.org/10.1002/pssr.202000536.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Gong, Zilun, Fuyi Yang, Letian Wang, Rui Chen, Junqiao Wu, Costas P. Grigoropoulos y Jie Yao. "Phase change materials in photonic devices". Journal of Applied Physics 129, n.º 3 (21 de enero de 2021): 030902. http://dx.doi.org/10.1063/5.0027868.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Tominaga, Junji. "Topological memory using phase-change materials". MRS Bulletin 43, n.º 5 (mayo de 2018): 347–51. http://dx.doi.org/10.1557/mrs.2018.94.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Feng, Guohui, Tianyu Wang, Na He y Gang Wang. "A Review of Phase Change Materials". E3S Web of Conferences 356 (2022): 01062. http://dx.doi.org/10.1051/e3sconf/202235601062.

Texto completo
Resumen
Phase change materials (PCMs) use latent heat of phase change to store heat, which has the advantages of high energy storage density and low-temperature fluctuation. And it can be applied to many fields such as the building envelope and the Heating Ventilation and Air Conditioning (HVAC) system. The PCM is a kind of energy storage material with great potential, which positively impacts energy conservation and indoor environment improvement. In this paper, the relevant research on PCMs in recent years is reviewed, three common classification methods of PCMs are summarized, and the phase change temperature range is re-divided. The temperature of PCMs is less than 80°C for low-temperature PCMs, between 80°C and 200°C for medium-temperature PCMs, and above 200°C for high-temperature PCMs. Then, the characteristics and thermal properties of some commonly used PCMs are listed, including organic PCMs, inorganic PCMs, and some composite phase change materials (CPCMs). By summarizing the thermal properties of PCMs, it can provide a reference for the selection of PCMs. Finally, the article also introduces several kinds of preparation methods for CPCMs. The solutions to the problems of low thermal conductivity, supercooling, phase separation, and leakage of PCMs are discussed. And the future research topics of PCMs are prospected.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Liu, Panpan, Yan Gao y Xiao Chen. "Magnetically tightened multifunctional phase change materials". Matter 5, n.º 6 (junio de 2022): 1639–42. http://dx.doi.org/10.1016/j.matt.2022.05.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Li, Zhou, Xiu-Wen Wu, Nan Wu, Yi-Yuan Fan, Xiao-Chen Sun, Ting-Ting Song y Qi Zhong. "Shape-Stabilized Thermochromic Phase-Change Materials". Journal of Thermophysics and Heat Transfer 32, n.º 1 (enero de 2018): 269–72. http://dx.doi.org/10.2514/1.t5088.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Liu, Panpan, Xiao Chen y Ge Wang. "Advanced 3D-printed phase change materials". Matter 4, n.º 11 (noviembre de 2021): 3374–76. http://dx.doi.org/10.1016/j.matt.2021.10.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Grigor’ev, I. S., A. V. Dedov y A. V. Eletskii. "Phase Change Materials and Power Engineering". Thermal Engineering 68, n.º 4 (abril de 2021): 257–69. http://dx.doi.org/10.1134/s0040601521040029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Rahman, Asif, Tadafumi Adschiri y Mohammed Farid. "Microindentation of Microencapsulated Phase Change Materials". Advanced Materials Research 275 (julio de 2011): 85–88. http://dx.doi.org/10.4028/www.scientific.net/amr.275.85.

Texto completo
Resumen
Due to the small size of microcapsules (1-1000 µm) used in a large number of applications, the individual rupture force of an individual particle has been difficult to obtain. A new technique involving nanomechanical testing was used in this study. We propose a standard method of testing the individual rupture force of Micronal®DS5008 microcapsules with an average size of approximately 11.2µm. Microcapsules were subjected to compressive force testing to determine the amount of force required to rupture the microcapsules. In order to find the mechanical properties of these microcapsules a standard nanoindentation system was setup with a 10µm radius diamond head cone indentation tip and the individual microcapsules were compressed till rupture occurred.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Boucíguez, A., L. T. Villa y M. A. Lara. "THERMAL CONDITIONING USING PHASE CHANGE MATERIALS". Revista de Engenharia Térmica 2, n.º 1 (30 de junio de 2003): 71. http://dx.doi.org/10.5380/reterm.v2i1.3521.

Texto completo
Resumen
A combined procedure using a classical qualitative result for initial and boundary problems associated to parabolic equations, numerical treatment and computational simulation, have been used to obtain some results on the dynamic behavior of the function that provides the position of the melting interface or moving front of the phase change material at each time. This material is used in a special device that is designed in order to get thermal conditioning in physical - chemical systems of practical importance. A monotone dependence of the melting interface upon some parameters is also shown.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Wójcik, Tadeusz M., Robert Pastuszko, Marta Wojda y Wojciech Kalawa. "Transitional Phenomena on Phase Change Materials". EPJ Web of Conferences 67 (2014): 02130. http://dx.doi.org/10.1051/epjconf/20146702130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gholipour, Behrad. "The promise of phase-change materials". Science 366, n.º 6462 (10 de octubre de 2019): 186–87. http://dx.doi.org/10.1126/science.aaz1129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Li, Hai Jian, Zhi Jiang Ji, Zhi Jun Xin y Jing Wang. "Preparation of Phase Change Building Materials". Advanced Materials Research 96 (enero de 2010): 161–64. http://dx.doi.org/10.4028/www.scientific.net/amr.96.161.

Texto completo
Resumen
The types and characteristics of phase change materials were discussed. With respect to application in building materials, the PCM should have more attractive properties including high latent heat values, stability and proper melting point, inflammability, corrosiveness and supercooling. Phase change building material (PCBM) was prepared using vacuum absorption method and tested by means of Differential Scanning Calorimetry(DSC) and Scanning Electron Microscopy(SEM). The testing results have shown that organic PCM was absorbed into the holes of inorganic carriers completely and distributed evenly with stable performances. It is concluded that the composite PCM has steady temperature-adjusting function and the preparation means is acceptable.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Shim, H., E. A. McCullough y B. W. Jones. "Using Phase Change Materials in Clothing". Textile Research Journal 71, n.º 6 (junio de 2001): 495–502. http://dx.doi.org/10.1177/004051750107100605.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Liu, Feng Q., Chenhao Ge, Kun Xu, Mengqi Ye, Yuchun Wang, Yufei Chen, Sherry Xia et al. "CMP Process for Phase Change Materials". ECS Transactions 19, n.º 7 (18 de diciembre de 2019): 73–79. http://dx.doi.org/10.1149/1.3123776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kiwan, Suhil, Hisham Ahmad, Ammar Alkhalidi, Wahib O. Wahib y Wael Al-Kouz. "Photovoltaic Cooling Utilizing Phase Change Materials". E3S Web of Conferences 160 (2020): 02004. http://dx.doi.org/10.1051/e3sconf/202016002004.

Texto completo
Resumen
A theoretical analysis based on mathematical formulations and experimental test to a photovoltaic system cooled by Phase Change Material (PCM) is carried out and documented. The PCM is attached to the back of the PV panel to control the temperature of cells in the PV panel. The experimental tests were done to solar systems with and without using PCM for comparison purposes. A PCM of paraffin graphite panels of thickness15 mm has covered the back of the panel. This layer was covered with an aluminum sheet fixed tightly to the panel frame. In the experimental test, it was found that when the average cell temperature exceeds the melting point temperature of the PCM, the efficiency of the system increases. However, when the cell temperature did not exceed the melting temperature of the PCM, the use of the PCM will affect negatively the system efficiency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Wełnic, Wojciech y Matthias Wuttig. "Reversible switching in phase-change materials". Materials Today 11, n.º 6 (junio de 2008): 20–27. http://dx.doi.org/10.1016/s1369-7021(08)70118-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

O'Neil, Gregory W., Tian Qing Yen, Michael A. Leitch, Gary R. Wilson, Emily A. Brown, David A. Rider y Christopher M. Reddy. "Alkenones as renewable phase change materials". Renewable Energy 134 (abril de 2019): 89–94. http://dx.doi.org/10.1016/j.renene.2018.11.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Sittisart, Pongphat y Mohammed M. Farid. "Fire retardants for phase change materials". Applied Energy 88, n.º 9 (septiembre de 2011): 3140–45. http://dx.doi.org/10.1016/j.apenergy.2011.02.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Zmeškal, O. y L. Dohnalová. "Thermal Properties of Phase Change Materials". International Journal of Thermophysics 35, n.º 9-10 (24 de abril de 2013): 1900–1911. http://dx.doi.org/10.1007/s10765-013-1436-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Lencer, Dominic, Martin Salinga, Blazej Grabowski, Tilmann Hickel, Jörg Neugebauer y Matthias Wuttig. "A map for phase-change materials". Nature Materials 7, n.º 12 (16 de noviembre de 2008): 972–77. http://dx.doi.org/10.1038/nmat2330.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Zheng, Qinghui, Yuxi Wang y Jia Zhu. "Nanoscale phase-change materials and devices". Journal of Physics D: Applied Physics 50, n.º 24 (24 de mayo de 2017): 243002. http://dx.doi.org/10.1088/1361-6463/aa70b0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Luckas, Jennifer, Daniel Krebs, Stephanie Grothe, Josef Klomfaß, Reinhard Carius, Christophe Longeaud y Matthias Wuttig. "Defects in amorphous phase-change materials". Journal of Materials Research 28, n.º 9 (9 de mayo de 2013): 1139–47. http://dx.doi.org/10.1557/jmr.2013.72.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Voit, Wolfgang, Werner Zapka, Andreas Menzel, Florian Mezger y Tom Sutter. "Inkjet Printing of Phase-Change Materials". NIP & Digital Fabrication Conference 24, n.º 1 (1 de enero de 2008): 678–83. http://dx.doi.org/10.2352/issn.2169-4451.2008.24.1.art00057_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

王, 执乾. "Preparation and Properties of Phase Change Microcapsules and Thermal Conductive Phase Change Materials". Journal of Advances in Physical Chemistry 11, n.º 03 (2022): 167–71. http://dx.doi.org/10.12677/japc.2022.113019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía