Artículos de revistas sobre el tema "Microbunch"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Microbunch.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 49 mejores artículos de revistas para su investigación sobre el tema "Microbunch".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Adli, Erik y Patric Muggli. "Proton-Beam-Driven Plasma Acceleration". Reviews of Accelerator Science and Technology 09 (enero de 2016): 85–104. http://dx.doi.org/10.1142/s1793626816300048.

Texto completo
Resumen
We describe the main ideas, promises and challenges related to proton-driven plasma wakefield acceleration. Existing high-energy proton beams have the potential to accelerate electron beams to the TeV scale in a single plasma stage. In order to drive a wake effectively the available beams must be either highly compressed or microbunched. The self-modulation instability has been suggested as a way to microbunch the proton beams. The AWAKE project at CERN is currently the only planned proton-driven plasma acceleration experiment. A self-modulated CERN SPS beam will be used to drive a plasma wake. We describe the design choices and experimental setup for AWAKE, and discuss briefly the short-term objectives as well as longer-term ideas for the project.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schächter, Levi y Wayne D. Kimura. "Quasi-monoenergetic ultrashort microbunch electron source". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 875 (diciembre de 2017): 80–86. http://dx.doi.org/10.1016/j.nima.2017.08.041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shields, W., R. Bartolini, G. Boorman, P. Karataev, A. Lyapin, J. Puntree y G. Rehm. "Microbunch Instability Observations from a THz Detector at Diamond Light Source". Journal of Physics: Conference Series 357 (3 de mayo de 2012): 012037. http://dx.doi.org/10.1088/1742-6596/357/1/012037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Huang, Z. y T. Shaftan. "Impact of beam energy modulation on rf zero-phasing microbunch measurements". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, n.º 1-2 (agosto de 2004): 345–49. http://dx.doi.org/10.1016/j.nima.2004.04.065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Carlsten, Bruce E., Kip A. Bishofberger, Leanne D. Duffy, John W. Lewellen, Quinn R. Marksteiner y Nikolai A. Yampolsky. "Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability". IEEE Transactions on Nuclear Science 63, n.º 2 (abril de 2016): 921–29. http://dx.doi.org/10.1109/tns.2015.2498619.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Petzoldt, J., K. E. Roemer, W. Enghardt, F. Fiedler, C. Golnik, F. Hueso-González, S. Helmbrecht et al. "Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility". Physics in Medicine and Biology 61, n.º 6 (4 de marzo de 2016): 2432–56. http://dx.doi.org/10.1088/0031-9155/61/6/2432.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kaufmann, Pierre y Jean-Pierre Raulin. "Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves?" Physics of Plasmas 13, n.º 7 (julio de 2006): 070701. http://dx.doi.org/10.1063/1.2244526.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Carlsten, Bruce E., Petr M. Anisimov, Cris W. Barnes, Quinn R. Marksteiner, River R. Robles y Nikolai Yampolsky. "High-Brightness Beam Technology Development for a Future Dynamic Mesoscale Materials Science Capability". Instruments 3, n.º 4 (29 de septiembre de 2019): 52. http://dx.doi.org/10.3390/instruments3040052.

Texto completo
Resumen
A future capability in dynamic mesoscale materials science is needed to study the limitations of materials under irreversible and extreme conditions, where these limitations are caused by nonuniformities and defects in the mesoscale. This capability gap could potentially be closed with an X-ray free-electron laser (XFEL), producing 5 × 1010 photons with an energy of 42 keV, known as the Matter–Radiation Interactions in Extremes (MaRIE) XFEL. Over the last few years, researchers at the Los Alamos National Laboratory have developed a preconceptual design for a MaRIE-class XFEL based on existing high-brightness beam technologies, including superconducting L-band cryomodules. However, the performance of a MaRIE-class XFEL can be improved and the risk of its operation reduced by investing in emerging high-brightness beam technologies, such as the development of high-gradient normal conducting radio frequency (RF) structures. Additionally, an alternative XFEL architecture, which generates a series of high-current microbunches instead of a single bunch with uniformly high current along it, may suppress the most important emittance degradation effects in the accelerator and in the XFEL undulator. In this paper, we describe the needed dynamic mesoscale materials science capability, a MaRIE-class XFEL, and the proposed microbunched XFEL accelerator architecture in detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Seo, Yoonho y Wonhyung Lee. "Stimulated Superradiance Emitted from Periodic Microbunches of Electrons". Japanese Journal of Applied Physics 49, n.º 11 (22 de noviembre de 2010): 116402. http://dx.doi.org/10.1143/jjap.49.116402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lumpkin, A. H. "Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics". International Journal of Modern Physics A 34, n.º 34 (10 de diciembre de 2019): 1943013. http://dx.doi.org/10.1142/s0217751x19430139.

Texto completo
Resumen
Application of coherent optical transition radiation (COTR) diagnostics to compact accelerators has been demonstrated for the laser-driven plasma accelerator case recently. It is proposed that such diagnostics for beam size, beam divergence, microbunching fraction, spectral content, and bunch length would be useful before and after any subsequent acceleration in crystals or nanostructures. In addition, there are indications that under some scenarios a microbunched beam could resonantly excite wake fields in nanostructures that might lead to an increased acceleration gradient.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Aginian, M. A., K. A. Ispirian, M. K. Ispiryan y M. I. Ivanyan. "Coherent X-ray Cherenkov radiation produced by microbunched beams". Journal of Physics: Conference Series 517 (30 de mayo de 2014): 012040. http://dx.doi.org/10.1088/1742-6596/517/1/012040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hemsing, E. y J. B. Rosenzweig. "Coherent transition radiation from a helically microbunched electron beam". Journal of Applied Physics 105, n.º 9 (mayo de 2009): 093101. http://dx.doi.org/10.1063/1.3121207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Schaap, B. H., T. D. C. de Vos, P. W. Smorenburg y O. J. Luiten. "Photon yield of superradiant inverse Compton scattering from microbunched electrons". New Journal of Physics 24, n.º 3 (1 de marzo de 2022): 033040. http://dx.doi.org/10.1088/1367-2630/ac59eb.

Texto completo
Resumen
Abstract Compact x-ray sources offering high-brightness radiation for advanced imaging applications are highly desired. We investigate, analytically and numerically, the photon yield of superradiant inverse Compton scattering from microbunched electrons in the linear Thomson regime, using a classical electrodynamics approach. We show that for low electron beam energy, which is generic to inverse Compton sources, the single electron radiation distribution does not match well to collective amplification pattern induced by a density modulated electron beam. Consequently, for head-on scattering from a visible laser, the superradiant yield is limited by the transverse size of typical electron bunches driving Compton sources. However, by simultaneously increasing the electron beam energy and introducing an oblique scattering geometry, the superradiant yield can be increased by orders of magnitude.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

He, Zhigang, Yuanfang Xu, Weiwei Li y Qika Jia. "Generation of quasiequally spaced ultrashort microbunches in a photocathode rf gun". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 775 (marzo de 2015): 77–83. http://dx.doi.org/10.1016/j.nima.2014.12.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Haoran, Wenxing Wang, Shimin Jiang, Cheng Li, Zhigang He, Shancai Zhang, Qika Jia, Lin Wang y Duohui He. "Coherent terahertz radiation with orbital angular momentum by helically microbunched electron beam". AIP Advances 11, n.º 5 (1 de mayo de 2021): 055115. http://dx.doi.org/10.1063/5.0052083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gevorgian, L. A., K. A. Ispirian y A. H. Shamamian. "Crystalline undulator radiation of microbunched beams taking into account the medium polarization". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 309 (agosto de 2013): 63–66. http://dx.doi.org/10.1016/j.nimb.2013.02.034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Parodi, K., P. Crespo, H. Eickhoff, T. Haberer, J. Pawelke, D. Schardt y W. Enghardt. "Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545, n.º 1-2 (junio de 2005): 446–58. http://dx.doi.org/10.1016/j.nima.2005.02.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ispirian, K. A. "Coherent X-ray radiation produced by microbunched beams in amorphous and crystalline radiators". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 309 (agosto de 2013): 4–9. http://dx.doi.org/10.1016/j.nimb.2013.01.072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Huibo, Ivan Konoplev y George Doucas. "A tunable source of coherent terahertz radiation driven by the microbunched electron beam". Journal of Physics D: Applied Physics 53, n.º 10 (24 de diciembre de 2019): 105501. http://dx.doi.org/10.1088/1361-6463/ab5d69.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kulipanov, G. N., A. S. Sokolov y N. A. Vinokurov. "Coherent undulator radiation of an electron beam, microbunched for the FEL power outcoupling". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 375, n.º 1-3 (junio de 1996): 576–79. http://dx.doi.org/10.1016/0168-9002(96)00038-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Geloni, Gianluca, Vitali Kocharyan y Evgeni Saldin. "On radiation emission from a microbunched beam with wavefront tilt and its experimental observation". Optics Communications 410 (marzo de 2018): 180–86. http://dx.doi.org/10.1016/j.optcom.2017.10.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Lumpkin, A. H., M. Erdmann, J. W. Lewellen, Y. C. Chae, R. J. Dejus, P. Den Hartog, Y. Li, S. V. Milton, D. W. Rule y G. Wiemerslage. "First observations of COTR due to a microbunched beam in the VUV at 157nm". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, n.º 1-2 (agosto de 2004): 194–98. http://dx.doi.org/10.1016/j.nima.2004.04.045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Tsai, Cheng-Ying y Weilun Qin. "Semi-analytical analysis of high-brightness microbunched beam dynamics with collective and intrabeam scattering effects". Physics of Plasmas 28, n.º 1 (enero de 2021): 013112. http://dx.doi.org/10.1063/5.0038246.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Stöckli, Martin P. "Production of microbunched beams of very highly charged ions with an electron beam ion source". Review of Scientific Instruments 69, n.º 2 (febrero de 1998): 649–51. http://dx.doi.org/10.1063/1.1148463.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kimura, W. D., N. E. Andreev, M. Babzien, I. Ben-Zvi, D. B. Cline, C. E. Dilley, S. C. Gottschalk et al. "Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, n.º 1840 (24 de enero de 2006): 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.

Texto completo
Resumen
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e -beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e -beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e -beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO 2 laser beam.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Aginian, M. A., K. A. Ispirian y M. K. Ispiryan. "Coherent X-ray diffraction radiation produced by microbunched beams passing close to the edge of a slab". Journal of Contemporary Physics (Armenian Academy of Sciences) 47, n.º 2 (28 de febrero de 2012): 53–57. http://dx.doi.org/10.3103/s1068337212020028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Xu, Haoran, Petr M. Anisimov, Bruce E. Carlsten, Leanne D. Duffy, Quinn R. Marksteiner y River R. Robles. "X-ray Free Electron Laser Accelerator Lattice Design Using Laser-Assisted Bunch Compression". Applied Sciences 13, n.º 4 (10 de febrero de 2023): 2285. http://dx.doi.org/10.3390/app13042285.

Texto completo
Resumen
We report the start-to-end modeling of our accelerator lattice design employing a laser-assisted bunch compression (LABC) scheme in an X-ray free electron laser (XFEL), using the proposed Matter-Radiation Interactions in Extremes (MaRIE) XFEL parameters. The accelerator lattice utilized a two-stage bunch compression scheme, with the first bunch compressor performing a conventional bulk compression enhancing the beam current from 20 A to 500 A, at 750 MeV. The second bunch compression was achieved by modulating the beam immediately downstream of the first bunch compressor by a laser with 1-μm wavelength in a laser modulator, accelerating the beam to the final energy of 12 GeV, and compressing the individual 1-μm periods of the modulated beam into a sequence of microbunches with 3-kA current spikes by the second bunch compressor. The LABC architecture presented had been developed based on the scheme of enhanced self-amplified spontaneous emission (ESASE), but operated in a disparate regime of parameters. Enabled by the novel technology of the cryogenic normal conducting radiofrequency photoinjector, we investigated an electron beam with ultra-low emittance at the starting point of the lattice design. Our work aimed at mitigating the well-known beam instabilities to preserve the beam emittance and suppress the energy spread growth.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Appel, Sabrina y Oliver Boine-Frankenheim. "Microbunch dynamics and multistream instability in a heavy-ion synchrotron". Physical Review Special Topics - Accelerators and Beams 15, n.º 5 (17 de mayo de 2012). http://dx.doi.org/10.1103/physrevstab.15.054201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

MacArthur, James P., Alberto A. Lutman, Jacek Krzywinski y Zhirong Huang. "Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam". Physical Review X 8, n.º 4 (29 de noviembre de 2018). http://dx.doi.org/10.1103/physrevx.8.041036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Cousineau, S., V. Danilov, J. Holmes y R. Macek. "Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring". Physical Review Special Topics - Accelerators and Beams 7, n.º 9 (8 de septiembre de 2004). http://dx.doi.org/10.1103/physrevstab.7.094201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ricci, Kenneth N. y Todd I. Smith. "Longitudinal electron beam and free electron laser microbunch measurements using off-phase rf acceleration". Physical Review Special Topics - Accelerators and Beams 3, n.º 3 (27 de marzo de 2000). http://dx.doi.org/10.1103/physrevstab.3.032801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Shevelev, M., A. Aryshev, N. Terunuma y J. Urakawa. "Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer". Physical Review Accelerators and Beams 20, n.º 10 (4 de octubre de 2017). http://dx.doi.org/10.1103/physrevaccelbeams.20.103401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Li, Y., W. Decking, B. Faatz y J. Pflueger. "Microbunch preserving bending system for a helical radiator at the European X-ray Free Electron Laser". Physical Review Special Topics - Accelerators and Beams 13, n.º 8 (10 de agosto de 2010). http://dx.doi.org/10.1103/physrevstab.13.080705.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Tsai, Cheng-Ying, Alexander Wu Chao, Yi Jiao, Hao-Wen Luo, Make Ying y Qinghong Zhou. "Coherent-radiation-induced longitudinal single-pass beam breakup instability of a steady-state microbunch train in an undulator". Physical Review Accelerators and Beams 24, n.º 11 (29 de noviembre de 2021). http://dx.doi.org/10.1103/physrevaccelbeams.24.114401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Stupakov, G. y P. Baxevanis. "Microbunched electron cooling with amplification cascades". Physical Review Accelerators and Beams 22, n.º 3 (20 de marzo de 2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.034401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Baxevanis, P. y G. Stupakov. "Transverse dynamics considerations for microbunched electron cooling". Physical Review Accelerators and Beams 22, n.º 8 (23 de agosto de 2019). http://dx.doi.org/10.1103/physrevaccelbeams.22.081003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Baxevanis, P. y G. Stupakov. "Hadron beam evolution in microbunched electron cooling". Physical Review Accelerators and Beams 23, n.º 11 (6 de noviembre de 2020). http://dx.doi.org/10.1103/physrevaccelbeams.23.111001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Ratner, D. "Microbunched Electron Cooling for High-Energy Hadron Beams". Physical Review Letters 111, n.º 8 (20 de agosto de 2013). http://dx.doi.org/10.1103/physrevlett.111.084802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Stupakov, G. "Cooling rate for microbunched electron cooling without amplification". Physical Review Accelerators and Beams 21, n.º 11 (2 de noviembre de 2018). http://dx.doi.org/10.1103/physrevaccelbeams.21.114402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Xiang, Dao, Erik Hemsing, Michael Dunning, Carsten Hast y Tor Raubenheimer. "Femtosecond Visualization of Laser-Induced Optical Relativistic Electron Microbunches". Physical Review Letters 113, n.º 18 (30 de octubre de 2014). http://dx.doi.org/10.1103/physrevlett.113.184802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Muggli, P., V. Yakimenko, M. Babzien, E. Kallos y K. P. Kusche. "Generation of Trains of Electron Microbunches with Adjustable Subpicosecond Spacing". Physical Review Letters 101, n.º 5 (29 de julio de 2008). http://dx.doi.org/10.1103/physrevlett.101.054801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Hacker, K., R. Molo, S. Khan, L. L. Lazzarino, C. Lechner, Th Maltezopoulos, T. Plath et al. "Measurements and simulations of seeded electron microbunches with collective effects". Physical Review Special Topics - Accelerators and Beams 18, n.º 9 (30 de septiembre de 2015). http://dx.doi.org/10.1103/physrevstab.18.090704.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ispirian, K. A. y M. Ispiryan. "Coherent x-ray transition and diffraction radiation of microbunched beams". Physical Review Special Topics - Accelerators and Beams 16, n.º 2 (5 de febrero de 2013). http://dx.doi.org/10.1103/physrevstab.16.020702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Schönenberger, Norbert, Anna Mittelbach, Peyman Yousefi, Joshua McNeur, Uwe Niedermayer y Peter Hommelhoff. "Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration". Physical Review Letters 123, n.º 26 (26 de diciembre de 2019). http://dx.doi.org/10.1103/physrevlett.123.264803.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Zhou, F., D. B. Cline y W. D. Kimura. "Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment". Physical Review Special Topics - Accelerators and Beams 6, n.º 5 (29 de mayo de 2003). http://dx.doi.org/10.1103/physrevstab.6.054201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sedaghat, M., S. Barzegar y A. R. Niknam. "Quasi-phase-matched laser wakefield acceleration of electrons in an axially density-modulated plasma channel". Scientific Reports 11, n.º 1 (26 de julio de 2021). http://dx.doi.org/10.1038/s41598-021-94751-y.

Texto completo
Resumen
AbstractQuasi-phase matching in corrugated plasma channels has been proposed as a way to overcome the dephasing limitation in laser wakefield accelerators. In this study, the phase-lock dynamics of a relatively long electron bunch injected in an axially-modulated plasma waveguide is investigated by performing particle simulations. The main objective here is to obtain a better understanding of how the transverse and longitudinal components of the wakefield as well as the initial properties of the beam affect its evolution and qualities. The results indicate that the modulation of the electron beam generates trains of electron microbunches. It is shown that increasing the initial energy of the electron beam leads to a reduction in its final energy spread and produces a more collimated electron bunch. For larger bunch diameters, the final emittance of the electron beam increases due to the stronger experienced transverse forces and the larger diameter itself. Increasing the laser power improves the maximum energy gain of the electron beam. However, the stronger generated focusing and defocusing fields degrade the collimation of the bunch.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Schaap, B. H., P. W. Smorenburg y O. J. Luiten. "Isolated attosecond X-ray pulses from superradiant thomson scattering by a relativistic chirped electron mirror". Scientific Reports 12, n.º 1 (17 de noviembre de 2022). http://dx.doi.org/10.1038/s41598-022-24288-1.

Texto completo
Resumen
AbstractTime-resolved investigation of electron dynamics relies on the generation of isolated attosecond pulses in the (soft) X-ray regime. Thomson scattering is a source of high energy radiation of increasing prevalence in modern labs, complementing large scale facilities like undulators and X-ray free electron lasers. We propose a scheme to generate isolated attosecond X-ray pulses based on Thomson scattering by colliding microbunched electrons on a chirped laser pulse. The electrons collectively act as a relativistic chirped mirror, which superradiantly reflects the laser pulse into a single localized beat. As such, this technique extends chirped pulse compression, developed for radar and applied in optics, to the X-ray regime. In this paper we theoretically show that, by using this approach, attosecond soft X-ray pulses with GW peak power can be generated from pC electron bunches at tens of MeV electron beam energy. While we propose the generation of few cycle X-ray pulses on a table-top system, the theory is universally scalable over the electromagnetic spectrum.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Marinelli, A., M. Dunning, S. Weathersby, E. Hemsing, D. Xiang, G. Andonian, F. O’Shea, Jianwei Miao, C. Hast y J. B. Rosenzweig. "Single-Shot Coherent Diffraction Imaging of Microbunched Relativistic Electron Beams for Free-Electron Laser Applications". Physical Review Letters 110, n.º 9 (1 de marzo de 2013). http://dx.doi.org/10.1103/physrevlett.110.094802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Sharma, Ashutosh y Christos Kamperidis. "High energy proton micro-bunches from a laser plasma accelerator". Scientific Reports 9, n.º 1 (25 de septiembre de 2019). http://dx.doi.org/10.1038/s41598-019-50348-0.

Texto completo
Resumen
Abstract Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic particle sources, particularly towards the viability of their usage in a breadth of applications, such as high energy physics and medical applications. Here, we identify a new ion acceleration mechanism and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the proposed ion acceleration mechanism due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser pulses with near-critical-density partially ionized plasmas (C & H species), we numerically observed high energy monochromatic proton microbunches of high quality (peak proton energy 350 MeV, laser to proton conversion efficiency ~10−4 and angular divergence <10 degree), which can be of high relevance for medical applications. We envisage that through this scheme, the range of attained energies and the monochromaticity of the accelerated protons can be increased with existing laser facilities or allow for laser-driven ion acceleration investigations to be pursued at moderate energies in smaller scale laser laboratories, hence reducing the size of the accelerators. The use of mixed-gas targets will enable high repetition rate operation of these accelerators, free of plasma debris and electromagnetic pulse disruptions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía