Literatura académica sobre el tema "Microbiota intestinale (Gut microbiota)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Microbiota intestinale (Gut microbiota)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Microbiota intestinale (Gut microbiota)"
Liu, Qihong, Yunfeng Luo y Xiao Ke. "Interaction between the Gut Microbiota and Intestinal Motility". Evidence-Based Complementary and Alternative Medicine 2022 (15 de noviembre de 2022): 1–5. http://dx.doi.org/10.1155/2022/3240573.
Texto completoThomas, Linda V., Theo Ockhuizen y Kaori Suzuki. "Exploring the influence of the gut microbiota and probiotics on health: a symposium report". British Journal of Nutrition 112, S1 (23 de junio de 2014): S1—S18. http://dx.doi.org/10.1017/s0007114514001275.
Texto completoMeiliana, Anna y Andi Wijaya. "Gut Microbiota, Obesity and Metabolic Dysfunction". Indonesian Biomedical Journal 3, n.º 3 (1 de diciembre de 2011): 150. http://dx.doi.org/10.18585/inabj.v3i3.147.
Texto completoNeophytou, Constantina y Chrysoula Pitsouli. "How Gut Microbes Nurture Intestinal Stem Cells: A Drosophila Perspective". Metabolites 12, n.º 2 (10 de febrero de 2022): 169. http://dx.doi.org/10.3390/metabo12020169.
Texto completoLeardini, Davide, Edoardo Muratore, Daniele Zama, Arcangelo Prete, Andrea Pession y Riccardo Masetti. "Il ruolo del microbiota intestinale nella modulazione immunitaria". Medico e Bambino pagine elettroniche 23, n.º 6 (30 de junio de 2020): 130–36. http://dx.doi.org/10.53126/mebxxiiig130.
Texto completoПальцын, А. А. "Gut microbiota". ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia», n.º 4() (21 de noviembre de 2018): 202–8. http://dx.doi.org/10.25557/0031-2991.2018.04.202-208.
Texto completoEom, Jung A., Goo Hyun Kwon, Na Yeon Kim, Eun Ju Park, Sung Min Won, Jin Ju Jeong, Ganesan Raja et al. "Diet-Regulating Microbiota and Host Immune System in Liver Disease". International Journal of Molecular Sciences 22, n.º 12 (13 de junio de 2021): 6326. http://dx.doi.org/10.3390/ijms22126326.
Texto completoJanczy, Agata, Magdalena Landowska y Zdzisław Kochan. "Gut microbiome dysbiosis in anorexia nervosa". Postępy Higieny i Medycyny Doświadczalnej 75 (29 de abril de 2021): 283–91. http://dx.doi.org/10.5604/01.3001.0014.8601.
Texto completoChernevskaya, E. A. y N. V. Beloborodova. "Gut Microbiome in Critical Illness (Review)". General Reanimatology 14, n.º 5 (28 de octubre de 2018): 96–119. http://dx.doi.org/10.15360/1813-9779-2018-5-96-119.
Texto completoGarrett, Wendy S. "Gut Microbiota and Intestinal Inflammation". Blood 120, n.º 21 (16 de noviembre de 2012): SCI—49—SCI—49. http://dx.doi.org/10.1182/blood.v120.21.sci-49.sci-49.
Texto completoTesis sobre el tema "Microbiota intestinale (Gut microbiota)"
Bilen, Melhem. "Description of the human gut microbiota by culturomics". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0177/document.
Texto completoThe human gut microbiota has been correlated in general health and diseases. Thus its description became mandatory to better understand its role and therapeutic potential. However, metagenomics has previously showed to be able to generate a lot of data, of which some are meaningless and constituted the “Dark matter”. Thus, culturomics was developed to complement metagenomics by targeting previously uncultured bacterial species. Using culturomics, we described the human gut microbiota of Pygmy people and succeeded in isolating a significant number of bacterial species out of which 38 were new species. Comparing metagenomics results to culturomics data, we see that only 26% of the isolated species were recovered by metagenomics and that up to 59% of the Operational taxonomic units detected corresponded to new bacterial species isolated by culturomics either in this study or in previous ones
Duca, Frank. "Altered satiation signaling in obesity : the role of nutrients, gut peptides, and gut microbiota". Paris 6, 2013. http://www.theses.fr/2013PA066078.
Texto completoLa prise alimentaire est contrôlée par un système complexe associant des modifications du système nerveux. Ces dysfonctionnents impliquent les outils de perception, notamment ceux en provenance de l'appareil gastro-intestinal en réponse à un repas. La diminution de la sensibilité intestinale aux nutriments a été décrite en partie comme responsable de l'apport énergétique accrue et du gain de poids chez les animaux et les humains au cours d'un régime hypercalorique. Cependant, le mécanisme par lequel un régime obesogène affecte les signaux intestinaux postprandiaux favorisant la surconsommation et leurs rôles dans la diminution du signal de satiété contribuant au développent de l'obésité reste très peu étayer. Par conséquent, le travail de cette thèse a pour but de caractériser le rôle d'un régime hypercalorique dans la diminution de la satiété induite par les nutriments, d'étudier le rôle des peptides gastro-intestinaux et de microbiote au cours d'un régime hypercalorique favorisant l'obésité chez les rats OP. Dans la première série d'expériences, nous avons constaté que les rats soumises un régime hypercalorique présentaient une réponse réduite aux effets suppresseurs de charges lipidiques gastriques comparé à des rats résistants à l'obésité (OR). Cette réponse a été associée à une altération des peptides intestinaux et des GPRS contribuant à une réduction du signal du satiété. Dans une deuxième série d'expériences, nous avons démontré que les rats obeses prônes (OP) développent une déficience de la voie de signalisation de GLP-1 au cours d'un régime hypercalorique. Sous un régime normal, les rats OP et OR avaient la même sensibilité aux effets anorexigène d'un agoniste du récepteur du GLP-1. Toutefois, le régime obesogène abolit la réponse suppressive de l'exendin-4 chez des rats OP. Ceci a été associée à une régulation négative de l'expression du GLP-1R dans les ganglions nodaux, une diminution des taux du GLP-1 circulants et du nombre des cellules L sécrétrices du GLP-1. La dernière série d'expériences démontre l'influence du microbiote intestinal dans la régulation de la chemosensibilité intestinale favorisant l'adiposité chez les rats OP. Les souris axéniques présentent une consommation accrue de solutions lipidiques associé à une diminution du signal satiétogène intestinal et des récepteurs d'acides gras. Nous avons conclu que l'absence du microbiote réduit le signal de satiété postprandial contribuant à la surconsommation des nutriments. Par la suite, nous avons identifié que les rats OP possèdent un profil du microbiote intestinal distinct de rats OR sous un régime hypercalorique. La conventionnalisation des souris axéniques avec le microbiote issu des rats OP, reproduit parfaitement le phénotype obèse avec à une réduction de la signalisation centrale et périphérique des voies contrôlant la prise alimentaire. En résumé, cette thèse apporte la preuve que l'interaction entre une prédisposition à l'obésité généralement polygénique couplée à une alimentation obesogène réduit la sensibilité intestinale aux nutriments, altérant la sécrétion et la sensibilité aux signaux de satiété. Ces effets ont pour conséquence un gain de poids et une expansion de la masse grasse. De plus, des preuves scientifiques supplémentaires sur la capacité d'un microbiote intestinal aberrant d'influencer les systèmes de régulation impliqués dans le maintien de l'homéostasie énergétique pourraient fournir des informations scientifiquement fondées afin de prévenir le développement et l'installation de l'obésité et contribuer aux progrès thérapeutiques de l'obésité
Engevik, Melinda A. "Ion Transport and the Gut Microbiota". University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397466973.
Texto completoANCONA, GIUSEPPE. "ROLE OF CART ON GUT MICROBIAL DYSBIOSIS, STUDYING THE GUT/BLOOD MICROBIOTA DURING THE FIRST TWO YEARS OF SUPPRESSIVE CART". Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/628966.
Texto completoNyangahu, Donald D. "Alterations in preconception, antenatal, and postnatal maternal gut microbiota influence offspring intestinal microbiota and immunity". Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25479.
Texto completoBassignani, Ariane. "Metaproteomics analysis to study functionalities of the gut microbiota in large cohorts". Electronic Thesis or Diss., Sorbonne université, 2019. https://theses.hal.science/tel-02871891.
Texto completoMetaproteomics focuses on identifying and quantifying proteins in complex biological samples such as the human gut microbiota. The analysis of several hundred of samples is of interest given the growing recognition of this ecosystem as a health partner. However, the methods and protocols used so far in metaproteomics are not suitable for large-scale studies. We have therefore developed algorithms, evaluated and compared several identification approaches for peptides and proteins and proposed systematic evaluation criteria, with a particular interest in the replicability of identifications, in order to develop a pre-treatment pipeline suitable for wide-ranging studies. This work bring a methodological base so far missing in the field of the metaproteomics of the human gut microbiota. Quantification of peptides and proteins by XIC has never been performed on this type of data, we have also compared normalization methods and developed a methodology for imputing missing data to refine the abundance estimations obtained by the more classical method of SC. This thesis work has highlighted microbial biomarkers of potential interest for predicting the response to a slimming diet, or to characterize various phenotypes of IBD. We have also been able to analyse the metaproteome of more than 200 patients in the framework of the ProteoCardis ANR, which is ancillary to the European project MetaCardis, and which focuses on the potential link between gut microbiota and cardiovascular diseases. The search for proteins of interest among these data should allow us to discover protective or aggravating candidate biomarkers of cardiovascular diseases
Nicolas, Simon. "Modulation de l'homéostasie glucidique par transfert de microbiote intestinal chez la souris conventionnelle". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30176/document.
Texto completoNowadays, the change of lifestyle and increase in the consumption of high-calorie foods are associated with a marked rise of the prevalence of metabolic diseases, including obesity and type 2 diabetes. Type 2 diabetes is linked, at least in part, to an increase of hepatic glucose production responsible for a fasting hyperglycemia. In the past decade, an increasing body of evidence has proposed gut microbiota as a new factor contributing to these metabolic alterations. Gut microbiota consists of trillions of bacteria identifying more than 1000 different species that inhabit our intestine. A body of work has demonstrated that multiple pathologies such as type 2 diabetes and obesity are characterized by an altered proportion and activity of the gut microbiota. In addition, the colonization of germ-free mice with the gut microbiota from either obese/diabetic humans or obese/diabetic mice transfers the phenotype. These results suggest that the modifications of the gut microbiota found in obese/diabetic patients are a potential etiologic factor for those diseases. Nevertheless, the lack of microbiota in germ-free mice determines both structural and functional alterations such as gut hyperpermeability and the atrophy of the immune system. Therefore, we could wonder whether the detrimental effects of the gut microbiota from obese/diabetic patients observed in germ-free mice may also be observed in healthy conventional mice. To address this issue, we have developed a new gut microbiota transferring process from conventional mice to other mice. We have transferred the cecal microbiota harvested from either obese ("obese microbiota") or lean ("lean microbiota") mice in antibiotic-free conventional mice. Surprisingly, the mice which received the "obese microbiota" had a reduced fasted glycaemia compared to the mice which received the "lean microbiota". This diminution could be attributed to a decrease of the hepatic gluconeogenesis since conversion from pyruvate to glucose and phosphoenolpyruvate carboxykinase activity were lower in the liver of mice which received the "obese microbiota". Conversely, the transfer of the "lean microbiota" did not affect the hepatic gluconeogenesis. In addition, the transfer of the "obese microbiota" changed gut microbiota composition and the microbiome of recipient mice. Interestingly, mice which received the "obese microbiota" and fed a high-fat diet still exhibited reduced fed and fasted glycaemia. Once again, this phenotype was due to a decrease of hepatic gluconeogenesis characterized by a diminution of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activity. In addition, the mice which received the "obese microbiota" had less adiposity compared to the non-transferred mice. Finally, we reported that transferring the "obese microbiota" impact on hepatic metabolism and prevent HFD-increase hepatic gluconeogenesis. On the one hand, these thesis works, have demonstrated that it is possible to modify the gut microbiota by our caecal transferring process. On the other hand, our results suggest that the transfer of the "obese microbiota" in conventional mice does not induced some characteristics of metabolic diseases contrary to that it is observed in germ-free mice. Furthermore, this kind of gut microbiota transferring process may be useful for a better understanding of the etiology of metabolic diseases
Patrascu, Isabelle. "Description des systèmes enzymatiques du microbiote iléal humain associés à la dégradation des fibres alimentaires et exploration du microbiote fécal d'un individu obèse : approche de métagénomique fonctionnelle et recherche de glycoside hydrolases inédites". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS098.
Texto completoAmong the crucial functions of the intestinal microbiota, extracting energy from food such as dietary fibres is of major importance. Facing the huge diversity of incoming complex carbohydrates, the fibrolytic bacteria synthesize a set of diversified Carbohydrate-Active Enzymes (CAZymes) including Glycoside Hydrolases (GH) that specifically disrupt complex polysaccharides. Here, using functional metagenomic approaches, we explored the organization and properties of bacterial enzymatic systems involved in the breakdown of plant cell wall (PCW) glycans in the intestinal tract.Firstly, we investigated the capacity of the microbiota associated to the human ileum mucosa to degrade complex non-starch polysaccharides in a healthy context. This function has never been investigated in this part of the intestine, but it has been rather associated to microorganisms inhabiting the colon, due to more accessible fecal samples. Using a fosmid library derived from a healthy part of the human ileal mucosa, we screened 20,000 metagenomic clones for their activities against carboxymethylcellulose and xylan chosen as models of the major PCW polysaccharides from dietary fibres. Twelve positive clones revealed a broad range of CAZyme encoding genes from Bacteroides to Clostridiales species, as well as Polysaccharide Utilization Loci (PUL). Functional GH genes were identified and break-down products examined from different polysaccharides including mixed-linkage β-glucans. Revealed CAZymes and PUL were also examined for their prevalence in human gut microbiomes. Part of them belongs to unidentified strains rather specifically established in the ileum. Others were enzymes unclassified in identified GH families or with original properties addressing novel candidates for biotechnological applications. Thus, we evidenced for the first time that the ileal mucosa associated-microbiota encompasses the enzymatic potential for PCW complex polysaccharide degradation that might start in the small intestine.In a second time, by using the same methodology, we harvested the enzymatic capacities of the fecal microbiota from an obese person to disrupt complex polysaccharides from dietary fibres usually consumed in lower quantity in obese people. This study aimed at examining the links between genes encoding enzymes specifically dedicated to PCW complex carbohydrates and the obese phenotypic status using reference microbial gene catalogs. We screened a fecal metagenomic library from an obese individual on representative PCW substrates and identified 50 clones belonging to 14 different species from the Bacteroidetes, Firmicutes and Actinobacteria phyla. The metagenomic inserts harbor genes encoding enzymes from GH families specific from complex carbohydrate degradation. First querying of the prevalence of these genes in hundreds individuals (obese and control), using catalogs of reference microbial genes, suggest associations with the "obese" phenotypic status
Duarte, Ana Lúcia Miranda. "Changes in the feline gut microbiota associated to Toxocara cati infections". Master's thesis, Universidade de Lisboa, Faculdade de Medicina Veterinária, 2018. http://hdl.handle.net/10400.5/15794.
Texto completoInvestigations of the relationships between the gut microbiota and gastrointestinal parasitic nematodes are attracting growing interest by the scientific community. These studies have however been carried out mainly in humans and experimental animals, while knowledge of the make-up of the gut commensal microbiota in presence or absence of infection by parasitic nematodes in domestic animals is limited. In this study, we investigate the qualitative and quantitative impact that infections by a widespread parasite of cats (i.e. Toxocara cati) exert on the gut microbiota of feline hosts. The faecal microbiota of cats with patent infection by T. cati (= Tc+), as well as that of negative controls (= Tc-) was examined via high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, followed by bioinformatics and biostatistical analyses of sequence data. A total of 2,325,366 useable high-quality sequences were generated from the faecal samples analysed in this study and subjected to further bioinformatics analyses, which led to the identification of 128 OTUs and nine bacterial phyla, respectively. The phylum Firmicutes was predominant in all samples analysed (mean of 53.0%), followed by the phyla Proteobacteria (13.8%), Actinobacteria (13.7%) and Bacteroidetes (10.1%). Among others, bacteria of the order Lactobacillales, the family Enterococcaceae and genera Enterococcus and Dorea showed a trend towards increased abundance in Tc+ compared with Tc- samples, while no significant differences in OTU richness and diversity were recorded between Tc+ and Tcsamples (P = 0.485 and P = 0.581, respectively). However, Canonical Correlation and Redundancy Analyses were able to separate samples by infection status (P = 0.030 and P = 0.015, respectively), which suggests a correlation between the latter and the composition of the feline faecal microbiota.
RESUMO - Alterações na microbiota intestinal felina associadas a infecções por Toxocara cati - A investigação das interações entre a microbiota intestinal e os nematodes intestinais tem vindo a atrair o interesse da comunidade cientifica. No entanto, a maioria destes estudos tem sido desenvolvida em humanos e animais de laboratório, e deste modo o conhecimento da composição da microbiota comensal do intestino na presença de nematodes intestinais é reduzido. Neste estudo, foi investigado o impacto qualitativo e quantitativo da infeção pelo parasita comum dos gatos (i.e. Toxocara cati) na microbiota intestinal do hospedeiro felino. A microbiota fecal de gatos com infeção patente por T. cati (Tc+), bem como controlos negativos (Tc-) foi avaliada através de sequenciação de alto débito da região hiper-variável V3-V4 do gene 16S, seguido de análise bioinformática e bioestatística. Das amostras fecais incluídas no estudo foram obtidas um total de 2 325 366 sequências de alta qualidade e sujeitas a analise bioinformática, o que levou à identificação de 128 OTUs e nove filos bacterianos. O filo Firmicutes foi encontrado em predominância em todas as amostras (média de 53,0%), seguido do filo Proteobacteria (13,8%), Actinobacteria (13,7%) e por fim Bacteroidetes (10,1%). A abundância de determinados grupos de bactérias tendeu a aumentar nas amostras Tc+ quando comparadas com as amostras Tc-, tais como a ordem Lactobacillales, a família Enterococaceae e o género Enterococcus e Dorea. No entanto, a riqueza e diversidade das OTUs não apresentou diferenças significativas entre as amostras Tc+ e Tc- (P=0,485 e P=0,581, respetivamente). Todavia, a análise canónica de redundância demonstrou uma separação das amostras de acordo com o estado de infeção (P=0,030 e P=0,015, respetivamente), o que sugere uma correlação entre este e a composição da microbiota fecal felina.
N/A
Ferrer, Clotas Marina. "Gut commensal microbiota and intestinal inflammation: modulatory role of rifaximin". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669498.
Texto completoLos trastornos funcionales gastrointestinales (síndrome del intestino irritable) y la enfermedad inflamatoria intestinal presentan una inflamación crónica del tracto gastrointestinal. Aunque su patogenia no se conoce totalmente, ambas enfermedades resultan de la interacción de la microbiota con factores ambientales que convergen en individuos genéticamente susceptibles, dando lugar a una activación anómala del sistema inmune. Los antibióticos con actividad inmunomoduladora son una opción terapéutica interesante por su acción simultánea frente la microbiota y la reacción inmunitaria. La rifaximina es un antibiótico no absorbible aprobado para el tratamiento del síndrome del intestino irritable con diarrea y con efectos beneficiosos en la enfermedad inflamatoria intestinal. Sin embargo, se desconoce su mecanismo de acción y la contribución de sus efectos antimicrobianos e inmunomoduladores. Este trabajo explora el mecanismo de acción de la rifaximina en ratones sanos y durante la inflamación intestinal aguda. Se valoraron los efectos de la rifaximina en animales sanos y en animales con colitis aguda, utilizando el modelo de colitis inducida por dextrano sulfato sódico (DSS, 3% en agua, 5 días). Los ratones se trataron preventivamente con rifaximina o doxiciclina (control positivo). Se valoraron los signos clínicos de inflamación y el estado del colon (macroscópicamente e histopatología) en el momento de la necropsia. La microbiota ceco-cólica, luminal y adherida al epitelio, se caracterizó mediante: hibridación in situ fluorescente (FISH), polimorfismos de longitud de fragmentos de restricción (T-RFLP) y secuenciación del 16S ARNr. La respuesta inmune local y los mecanismos de interacción hospedador-microbiota se valoraron determinando cambios en la expresión génica (RT-qPCR) de citoquinas pro- y anti-inflamatorias, péptidos antimicrobianos y receptores de tipo Toll (TLRs). En animales sanos, la rifaximina no modificó los recuentos totales de bacterias ceco-cólicas, su biodiversidad o la adherencia bacteriana a la pared del colon. Sólo se observaron cambios menores en la expresión de TLRs o de otros marcadores de tipo inmune. Los animales que recibieron DSS mostraron signos clínicos indicativos del desarrollo de colitis, con regulación al alza en la expresión de marcadores inmunes, incluyendo al péptido antimicrobiano RegIIIɣ. La rifaximina no afectó el curso clínico de la colitis ni la expresión de dichos marcadores. Por el contrario, la doxiciclina atenuó ambas respuestas. Con independencia del tratamiento aplicado, sólo se observaron cambios menores en la expresión de TLRs. La expresión del receptor X de pregnano (PXR) disminuyó durante la inducción de la colitis, un cambio no modificado por la rifaximina, pero que se previno con la doxiciclina. La colitis indujo una disbiosis caracterizada por un aumento de Verrucomicrobia y Deferribacteres con un descenso de Bacteroidetes, manteniéndose la diversidad de tipo alfa. Durante el tratamiento con rifaximina, con o sin colitis, se mantuvo la biodiversidad, con una composición bacteriana muy similar a la observada en animales sanos. Los animales tratados con doxiciclina mostraron cambios extensos en la microbiota, con similitudes entre los grupos inflamado y no inflamado. Concretamente, la doxiciclina redujo los grupos Clostridiales patogénicos, mientras que aumentó los Clostridia grupo XIVa, Lactobacillus and Ruminococcus, considerados grupos beneficiosos. Estos resultados muestran que en animales sanos la rifaximina presenta una actividad antimicrobiana e inmunomoduladora limitada. En estado de colitis, la rifaximina no manifiesta efectos inmunomoduladores ni antimicrobianos consistentes con una actividad anti-inflamatoria. Sin embargo, estas acciones no pueden excluirse en humanos, explicando los efectos beneficiosos observados clínicamente. (...)
Inflammation of the gastrointestinal tract is a common component of functional gastrointestinal disorders (irritable bowel syndrome, IBS and inflammatory bowel disease, IBD). Evidences indicate that both arise because of a convergence of altered microbiota and external environmental factors in genetically susceptible individuals, leading to abnormal immune responses and the development of persistent inflammation, through a mechanism not fully understood. Given the important role of the microbiota and the immune system in their pathogenesis, immunomodulatory antibiotics are an interesting therapeutic approach, targeting simultaneously the microbiota and the exacerbated inflammatory response. Rifaximin is a non-absorbable antibiotic approved for the treatment of IBS with diarrhea and with beneficial effects in IBD. However, the mechanisms mediating these effects and the exact contribution of its antimicrobial and immunomodulatory activities are not fully understood. This work explores the mechanisms of action of rifaximin modulating gut microbiota and the local immune system in a healthy state and during acute intestinal inflammation using a dextran sulfate sodium (DSS)-induced colitis mouse model. First, healthy female mice were treated with either vehicle or rifaximin during 7 or 14 days. In a second study, colitis was induced with DSS (3% in water, 5 days). Mice were treated, in a preventive manner, with either rifaximin or doxycycline, serving as positive control. Daily clinical signs were recorded. At necropsy, colonic inflammation was assessed (macroscopic signs and histopathology). Luminal and wall-adhered ceco-colonic microbiota were characterized by fluorescent in situ hybridization (FISH), terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequencing. Local immune responses and host-bacterial interactions were determined assessing the expression (RT-qPCR) of pro- and anti-inflammatory cytokines, antimicrobial peptides and Toll-like receptors (TLRs). In healthy mice, rifaximin did not modify neither total ceco-colonic bacterial counts not microbial biodiversity. Moreover, rifaximin was associated to a minor upregulation of TLRs expression, without changes in the expression of immune-related markers. Animals receiving DSS showed clinical signs indicative of the development of colitis. Rifaximin did not affect the clinical course of colitis, while doxycycline attenuated clinical signs. Similarly, colitis-associated up-regulation of immune-related markers was not affected by rifaximin, while doxycycline completely prevented this response. As it relates to host-bacterial interaction markers, colitis selectively up-regulated the antimicrobial peptide RegIIIɣ, while it had minor effects on TLRs expression. Rifaximin did not affect colitis-associated RegIIIɣ up-regulation, while doxycycline completely normalized its expression. The pregnane X receptor (PXR) was down-regulated during colitis, a change not affected by rifaximin but prevented by doxycycline. DSS-induced colitis was associated to a dysbiotic state characterized by an increase in Verrucomicrobia and Deferribacteres and a simultaneous decrease in Bacteroidetes; with a maintenance of alpha diversity. During rifaximin treatment, with or without colitis, bacterial richness was maintained, with a bacterial composition closely related to that observed in healthy animals, vs. that observed during colitis. Doxycycline-treated animals showed extensive changes in their microbiota, with similarities between the inflamed and non-inflamed conditions. Particularly, doxycycline reduced pathogenic Clostridiales, while increased Clostridia cluster XIVa-related, Lactobacillus and Ruminococcus, considered beneficial groups. (...)
Libros sobre el tema "Microbiota intestinale (Gut microbiota)"
Olds, William. Health and the gut: The emerging role of intestinal microbiota in disease and therapeutics. Toronto: Apple Academic Press, 2015.
Buscar texto completoTannock, Gerald W., ed. Understanding the Gut Microbiota. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118801413.
Texto completoPierre, Joseph F., ed. Metabolism of Nutrients by Gut Microbiota. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839160950.
Texto completoChen, Peng, ed. Gut Microbiota and Pathogenesis of Organ Injury. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2385-4.
Texto completoMarotta, Francesco, ed. Gut Microbiota in Aging and Chronic Diseases. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14023-5.
Texto completoKogut, Michael H. y Glenn Zhang, eds. Gut Microbiota, Immunity, and Health in Production Animals. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90303-9.
Texto completoKochhar, Sunil y François-Pierre Martin, eds. Metabonomics and Gut Microbiota in Nutrition and Disease. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6539-2.
Texto completoAzcarate-Peril, M. Andrea, Roland R. Arnold y José M. Bruno-Bárcena, eds. How Fermented Foods Feed a Healthy Gut Microbiota. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28737-5.
Texto completoN.Y.) Nestlé Nutrition Workshop (79th 2013 New York. Nutrition, gut microbiota and immunity: Therapeutic targets for IBD. Editado por Lewis James D. editor, Ruemmele Frank M. editor, Wu Gary D. editor y Nestlé Nutrition Institute. Basel, Switzerland: Karger, 2014.
Buscar texto completoLyte, Mark y John F. Cryan, eds. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0897-4.
Texto completoCapítulos de libros sobre el tema "Microbiota intestinale (Gut microbiota)"
Sartor, R. Balfour. "The Intestinal Microbiota in Inflammatory Bowel Diseases". En Nutrition, Gut Microbiota and Immunity: Therapeutic Targets for IBD, 29–39. Basel: S. KARGER AG, 2014. http://dx.doi.org/10.1159/000360674.
Texto completoCalo-Mata, Pilar, Jose Manuel Ageitos, Karola Böhme y Jorge Barros-Velázquez. "Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens". En New Weapons to Control Bacterial Growth, 281–314. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28368-5_12.
Texto completoBortoluzzi, Cristiano, Fernanda Lima de Souza Castro y Michael Kogut. "Butyrate and Intestinal Homeostasis: Effects on the Intestinal Microbiota and Epithelial Hypoxia". En Gut Microbiota, Immunity, and Health in Production Animals, 57–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90303-9_4.
Texto completoPool-Zobel, Beatrice L. "Diet and Biotransformation of Carcinogenic Compounds in the Gut by Enzymes of Microflora and of Intestinal Cells". En Colonic Microbiota, Nutrition and Health, 245–55. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-1079-4_15.
Texto completoRostagno, Marcos H. "Managing Intestinal Health in Farm Animals: A Critical View". En Gut Microbiota, Immunity, and Health in Production Animals, 1–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90303-9_1.
Texto completoRodrigues, Denise R. "Role of Early Life Intestinal Microbiota in Modulating Immunity in Broiler Chickens". En Gut Microbiota, Immunity, and Health in Production Animals, 225–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90303-9_11.
Texto completoPerrigoue, Jacqueline, Anuk Das y J. Rodrigo Mora. "Interplay of Nutrients and Microbial Metabolites in Intestinal Immune Homeostasis: Distinct and Common Mechanisms of Immune Regulation in the Small Bowel and Colon". En Nutrition, Gut Microbiota and Immunity: Therapeutic Targets for IBD, 57–71. Basel: S. KARGER AG, 2014. http://dx.doi.org/10.1159/000360685.
Texto completoCarey, Hannah V., Amanda C. Pike, Christopher R. Weber, Jerrold R. Turner, Annie Visser, Silvia C. Beijer-Liefers, Hjalmar R. Bouma y Frans G. M. Kroese. "Impact of Hibernation on Gut Microbiota and Intestinal Barrier Function in Ground Squirrels". En Living in a Seasonal World, 281–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28678-0_25.
Texto completoChu, Fong-Fong. "Gut Microbiota". En Encyclopedia of Cancer, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7172-4.
Texto completoChu, Fong-Fong. "Gut Microbiota". En Encyclopedia of Cancer, 1974–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_7172.
Texto completoActas de conferencias sobre el tema "Microbiota intestinale (Gut microbiota)"
Andrade, Dariana Rodrigues, Letícia Mendes de Lima, Luis Henrique Goes Hamati Rosa y Edvaldo Cardoso. "Brain-gut-microbiota axis in motor disorders". En XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.401.
Texto completoLopes, Lorena Vieira, VINÍCIUS GRZECHOEZINSKI AUDINO y GABRIEL STECHECHEN WIER. "EIXO INTESTINO-PULMÃO E O PAPEL DA MICROBIOTA INTESTINAL NA RESPOSTA À INFECÇÃO POR SARS-COV-2". En II Congresso Brasileiro de Imunologia On-line. Revista Multidisciplinar em Saúde, 2022. http://dx.doi.org/10.51161/ii-conbrai/6286.
Texto completoOliveira, Nathália Brígida de, Anna Clara Silva Fonseca, Lailla Luísa Silva Gomes, Aline Balducci Ferreira Dos Santos y Beatriz Martins Borelli. "ANÁLISE DA RELAÇÃO ENTRE A SÍNDROME DE LEAKY GUT, A MICROBIOTA INTESTINAL E DOENÇAS AUTOIMUNES: UMA REVISÃO BIBLIOGRÁFICA". En I Congresso Nacional de Microbiologia Clínica On-Line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/1215.
Texto completoKozlovskaya, G. V., M. I. Zinevich, Y. E. Kozlovsky, T. I. Khomyakova y A. D. Magomedova. "IMMUNOLOGICAL ASPECT OF ORAL ADMINISTRATION OF THE PROBIOTIC LACTOBACILLUS CASEI LB 148 UNDER COLD STRESS IN ANIMALS". En STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.349-351.
Texto completoBrenna, J. Thomas. "The gut microbiome and dietary fatty acids". En 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/rvcu7594.
Texto completoAl Khatib, Heba, Muna Al Maslamani, Peter Coyle, Sameer Pathan, Asmaa Al Thani y Hadi Mohamad Yassine. "Molecular Characterization of Influenza Virus in Intestines and its Effect on Intestinal Microbiota". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0165.
Texto completoOrlenkovich, Lilija. "CORRELATIONS ANALYSIS OF IMMUNE SYSTEM AND GUT MICROBIOTA INDICES OF RATS IN THE CHRONIC EXPOSITION TO BIOINSECTICIDE ENTOMOPHTHORIN". En XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fd728a1ea3837.21988844.
Texto completoThomas, John P., Aimee Parker, Devina Divekar, Carmen Pin y Alastair Watson. "PTU-066 The gut microbiota influences intestinal epithelial proliferative potential". En British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.407.
Texto completoNogueira, Fábio Dias, Ana Klara Rodrigues Alves, Barbara Beatriz Lira da Silva, Ana Kamila Rodrigues Alves, Marlilia Moura Coelho Sousa, Ana Karla Rodrigues Alves, Wanderson da Silva Nery, Breno Carvalho de Almeida, Flávia Dias Nogueira y Leiz Maria Costa Véras. "The autistic spectrum disorder and its relation to intestinal dysbiosis". En XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.283.
Texto completoMaia, Lucas Henrique, Thaís Galdino Diniz, Vitor Carvalho Caetano, Marina Gomes Diniz, Pedro Lucas Bessa dos Reis, Gabriela Vieira Marques da Costa Leão, Vitor Moreira Nunes y Helton José dos Reis. "Antibiotic therapy as a risk factor in Parkinson’s disease". En XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.521.
Texto completoInformes sobre el tema "Microbiota intestinale (Gut microbiota)"
yu, luyou, jinping yang, xi meng y yanhua lin. Effectiveness of the gut microbiota-bile acid pathway (BAS) in the treatment of Type 2 diabetes: A protocol for systematic review and meta analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julio de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0117.
Texto completoSchokker, Dirkjan, Petra Roubos, Evelien Alderliesten, Arie Kies, Els Willems y Mari Smits. Integration of multiple gut microbiota datasets of pigs and broilers. Wageningen: Wageningen Livestock Research, 2017. http://dx.doi.org/10.18174/426339.
Texto completoGong, Boshen, Fanrui Meng y Yang Yang. Association Between Gut Microbiota and Autoimmune Thyroid Disease: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, abril de 2021. http://dx.doi.org/10.37766/inplasy2021.4.0135.
Texto completoYang, zeqi, qiuhong Guo, yangyang Han, fan Gao, jiaye Tian y ran Bai. Effects of traditional chinese medicine intervention on the gut microbiota in patients with chronic heart failure. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, junio de 2022. http://dx.doi.org/10.37766/inplasy2022.6.0006.
Texto completoHuang, Li, Xin Luo y Ming Chen. Effect of Traditional Chinese Medicine on Gut Microbiota with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, octubre de 2021. http://dx.doi.org/10.37766/inplasy2021.10.0118.
Texto completoHuang, Langlang, Jianan Wang, Ri Xu, Yanwei Liu y Zhongyong Liu. Regulatory effect of traditional Chinese medicine on gut microbiota in patients with atherosclerosis:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, noviembre de 2020. http://dx.doi.org/10.37766/inplasy2020.11.0056.
Texto completoJiang, Qiong, Zhong Cao, Yu Zhang, Ju Qiu, Hui Chen y Jia Li. Effects of acupuncture and moxibustion on the gut microbiota of Irritable Bowel Syndrome (IBS): a protocol for the systematic review and meta-analysis of randomized controlled trials in animal models. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, mayo de 2022. http://dx.doi.org/10.37766/inplasy2022.5.0118.
Texto completoGrueso-Navarro, Elena, Leticia Rodríguez-Alcolado, Ángel Arias, Emilio J. Laserna-Mendieta y Alfredo J. Lucendo. Influence of HLA-DQA1*05 allele in the response to anti-TNFα drugs in inflammatory bowel diseases. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, febrero de 2023. http://dx.doi.org/10.37766/inplasy2023.2.0076.
Texto completo