Siga este enlace para ver otros tipos de publicaciones sobre el tema: Microbial metabolism.

Artículos de revistas sobre el tema "Microbial metabolism"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Microbial metabolism".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

VINOPAL, R. T. "Microbial Metabolism". Science 239, n.º 4839 (29 de enero de 1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Downs, Diana M. "Understanding Microbial Metabolism". Annual Review of Microbiology 60, n.º 1 (octubre de 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

ARNAUD, CELIA. "VIEWING MICROBIAL METABOLISM". Chemical & Engineering News 85, n.º 38 (17 de septiembre de 2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wackett, Lawrence P. "Microbial metabolism prediction". Environmental Microbiology Reports 2, n.º 1 (8 de febrero de 2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hahn-Hägerdal, Bärbel y Neville Pamment. "Microbial Pentose Metabolism". Applied Biochemistry and Biotechnology 116, n.º 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 5, n.º 2 (5 de marzo de 2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 15, n.º 3 (5 de mayo de 2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rajini, K. S., P. Aparna, Ch Sasikala y Ch V. Ramana. "Microbial metabolism of pyrazines". Critical Reviews in Microbiology 37, n.º 2 (11 de abril de 2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chubukov, Victor, Luca Gerosa, Karl Kochanowski y Uwe Sauer. "Coordination of microbial metabolism". Nature Reviews Microbiology 12, n.º 5 (24 de marzo de 2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ash, Caroline. "Microbial entrainment of metabolism". Science 365, n.º 6460 (26 de septiembre de 2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Nakamura, T. "Microbial Manipulation of Metabolism". Science Translational Medicine 4, n.º 148 (22 de agosto de 2012): 148ec153. http://dx.doi.org/10.1126/scitranslmed.3004777.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Orabi, K. "Microbial metabolism of artemisitene". Phytochemistry 51, n.º 2 (mayo de 1999): 257–61. http://dx.doi.org/10.1016/s0031-9422(98)00770-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Rao, AS. "Terminology in microbial metabolism". Biochemical Education 24, n.º 1 (enero de 1996): 61–62. http://dx.doi.org/10.1016/s0307-4412(96)80011-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Howland, John L. "Microbial physiology and metabolism". Biochemical Education 23, n.º 2 (abril de 1995): 106. http://dx.doi.org/10.1016/0307-4412(95)90661-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Cerniglia, Carl E., Daniel W. Kelly, James P. Freeman y Dwight W. Miller. "Microbial metabolism of pyrene". Chemico-Biological Interactions 57, n.º 2 (febrero de 1986): 203–16. http://dx.doi.org/10.1016/0009-2797(86)90038-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Sonnleitner, B. "Quantitation of microbial metabolism". Antonie van Leeuwenhoek 60, n.º 3-4 (1991): 133–43. http://dx.doi.org/10.1007/bf00430361.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Stoker, C. R., P. J. Boston, R. L. Mancinelli, W. Segal, B. N. Khare y C. Sagan. "Microbial metabolism of tholin". Icarus 85, n.º 1 (mayo de 1990): 241–56. http://dx.doi.org/10.1016/0019-1035(90)90114-o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Alfred, Jane. "Microbial genomes to metabolism". Nature Reviews Genetics 3, n.º 10 (octubre de 2002): 733. http://dx.doi.org/10.1038/nrg922.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Dong, Mei, Xizhi Feng, Ben-Xiang Wang, Takashi Ikejima y Li-Jun Wu. "Microbial Metabolism of Pseudoprotodioscin". Planta Medica 70, n.º 7 (julio de 2004): 637–41. http://dx.doi.org/10.1055/s-2004-827187.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mikell, Julie Rakel, Wimal Herath y Ikhlas Ahmad Khan. "Microbial Metabolism. Part 12." Chemical and Pharmaceutical Bulletin 59, n.º 6 (2011): 692–97. http://dx.doi.org/10.1248/cpb.59.692.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Heider, Johann y Georg Fuchs. "Microbial Anaerobic Aromatic Metabolism". Anaerobe 3, n.º 1 (febrero de 1997): 1–22. http://dx.doi.org/10.1006/anae.1997.0073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

McChesney, J. y S. Kouzi. "Microbial Models of Mammalian Metabolism: Sclareol Metabolism". Planta Medica 56, n.º 06 (diciembre de 1990): 693. http://dx.doi.org/10.1055/s-2006-961374.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Raab, Andrea y Jörg Feldmann. "Microbial Transformation of Metals and Metalloids". Science Progress 86, n.º 3 (agosto de 2003): 179–202. http://dx.doi.org/10.3184/003685003783238671.

Texto completo
Resumen
Throughout evolution, microbes have developed the ability to live in nearly every environmental condition on earth. They can grow with or without oxygen or light. Microbes can dissolve or precipitate ores and are able to yield energy from the reduction/oxidation of metal ions. Their metabolism depends on the availability of metal ions in essential amounts and protects itself from toxic amounts of metals by detoxification processes. Metals are metabolised to metallorgano-compounds, bound to proteins or used as catalytic centres of enzymes in biological reactions. Microbes, as every other cell, have developed a whole range of mechanisms for the uptake and excretion of metals and their metabolised compounds. The diversity of microbial metabolism can be illustrated by the fact that certain microbes can be found living on arsenate, which is considered a highly toxic metal for most other forms of live.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Fouillaud, Mireille y Laurent Dufossé. "Microbial Secondary Metabolism and Biotechnology". Microorganisms 10, n.º 1 (7 de enero de 2022): 123. http://dx.doi.org/10.3390/microorganisms10010123.

Texto completo
Resumen
In recent decades scientific research has demonstrated that the microbial world is infinitely richer and more surprising than we could have imagined. Every day, new molecules produced by microorganisms are discovered, and their incredible diversity has not yet delivered all of its messages. The current challenge of research is to select from the wide variety of characterized microorganisms and compounds, those which could provide rapid answers to crucial questions about human or animal health or more generally relating to society’s demands for medicine, pharmacology, nutrition or everyday well-being.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Wintermute, Edwin H. y Pamela A. Silver. "Emergent cooperation in microbial metabolism". Molecular Systems Biology 6, n.º 1 (enero de 2010): 407. http://dx.doi.org/10.1038/msb.2010.66.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Crunkhorn, Sarah. "Microbial metabolite predicts human metabolism". Nature Reviews Drug Discovery 8, n.º 10 (octubre de 2009): 772–73. http://dx.doi.org/10.1038/nrd3008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Schuetz, R., N. Zamboni, M. Zampieri, M. Heinemann y U. Sauer. "Multidimensional Optimality of Microbial Metabolism". Science 336, n.º 6081 (3 de mayo de 2012): 601–4. http://dx.doi.org/10.1126/science.1216882.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

VanHook, Annalisa M. "Microbial metabolites shape lipid metabolism". Science Signaling 13, n.º 627 (14 de abril de 2020): eabc1552. http://dx.doi.org/10.1126/scisignal.abc1552.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ensign, Scott A. "Microbial Metabolism of Aliphatic Alkenes†". Biochemistry 40, n.º 20 (mayo de 2001): 5845–53. http://dx.doi.org/10.1021/bi015523d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kochanowski, Karl, Uwe Sauer y Elad Noor. "Posttranslational regulation of microbial metabolism". Current Opinion in Microbiology 27 (octubre de 2015): 10–17. http://dx.doi.org/10.1016/j.mib.2015.05.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Heinemann, Matthias y Uwe Sauer. "Systems biology of microbial metabolism". Current Opinion in Microbiology 13, n.º 3 (junio de 2010): 337–43. http://dx.doi.org/10.1016/j.mib.2010.02.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kelly, D. P. y J. C. Murrell. "Microbial metabolism of methanesulfonic acid". Archives of Microbiology 172, n.º 6 (15 de noviembre de 1999): 341–48. http://dx.doi.org/10.1007/s002030050770.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Codd, G. A. "Environmental regulation of microbial metabolism". Endeavour 10, n.º 1 (enero de 1986): 52. http://dx.doi.org/10.1016/0160-9327(86)90063-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

McArthur, George H. y Stephen S. Fong. "Toward Engineering Synthetic Microbial Metabolism". Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.

Texto completo
Resumen
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements inde novoDNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zhan, Ji-Xun, Yuan-Xing Zhang, Hong-Zhu Guo, Jian Han, Li-Li Ning y De-An Guo. "Microbial Metabolism of Artemisinin byMucorpolymorphosporusandAspergillusniger". Journal of Natural Products 65, n.º 11 (noviembre de 2002): 1693–95. http://dx.doi.org/10.1021/np020113r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Negre, M., M. Gennari, V. Andreoni, R. Ambrosoli y L. Celi. "Microbial metabolism of fluazifop-butyl". Journal of Environmental Science and Health, Part B 28, n.º 5 (octubre de 1993): 545–76. http://dx.doi.org/10.1080/03601239309372841.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Herath, Wimal, Daneel Ferreira, Julie Rakel Mikell y Ikhlas Ahmad Khan. "Microbial Metabolism. Part 5. Dihydrokawain". CHEMICAL & PHARMACEUTICAL BULLETIN 52, n.º 11 (2004): 1372–74. http://dx.doi.org/10.1248/cpb.52.1372.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Herath, Wimal, Daneel Ferreira y Ikhlas A. Khan. "Microbial metabolism. Part 7: Curcumin". Natural Product Research 21, n.º 5 (mayo de 2007): 444–50. http://dx.doi.org/10.1080/14786410601082144.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Klitgord, Niels y Daniel Segrè. "Ecosystems biology of microbial metabolism". Current Opinion in Biotechnology 22, n.º 4 (agosto de 2011): 541–46. http://dx.doi.org/10.1016/j.copbio.2011.04.018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gennari, Mara, Marco Vincenti, Michèle Nègre y Roberto Ambrosoli. "Microbial metabolism of fenoxaprop-ethyl". Pesticide Science 44, n.º 3 (julio de 1995): 299–303. http://dx.doi.org/10.1002/ps.2780440314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Martínez-Espinosa, Rosa María y Carmen Pire. "Molecular Advances in Microbial Metabolism". International Journal of Molecular Sciences 24, n.º 9 (28 de abril de 2023): 8015. http://dx.doi.org/10.3390/ijms24098015.

Texto completo
Resumen
Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Bidkhori, Gholamreza y Saeed Shoaie. "MIGRENE: The Toolbox for Microbial and Individualized GEMs, Reactobiome and Community Network Modelling". Metabolites 14, n.º 3 (21 de febrero de 2024): 132. http://dx.doi.org/10.3390/metabo14030132.

Texto completo
Resumen
Understanding microbial metabolism is crucial for evaluating shifts in human host–microbiome interactions during periods of health and disease. However, the primary hurdle in the realm of constraint-based modeling and genome-scale metabolic models (GEMs) pertaining to host–microbiome interactions lays in the efficient utilization of metagenomic data for constructing GEMs that encompass unexplored and uncharacterized genomes. Challenges persist in effectively employing metagenomic data to address individualized microbial metabolisms to investigate host–microbiome interactions. To tackle this issue, we have created a computational framework designed for personalized microbiome metabolisms. This framework takes into account factors such as microbiome composition, metagenomic species profiles and microbial gene catalogues. Subsequently, it generates GEMs at the microbial level and individualized microbiome metabolisms, including reaction richness, reaction abundance, reactobiome, individualized reaction set enrichment (iRSE), and community models. Using the toolbox, our findings revealed a significant reduction in both reaction richness and GEM richness in individuals with liver cirrhosis. The study highlighted a potential link between the gut microbiota and liver cirrhosis, i.e., increased level of LPS, ammonia production and tyrosine metabolism on liver cirrhosis, emphasizing the importance of microbiome-related factors in liver health.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Kiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada y S. Kanazawa. "Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts". Soil and Water Research 7, No. 3 (10 de julio de 2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.

Texto completo
Resumen
The effects of highly volatile organochlorine solvents (1,1,1-trichloroethane, TCET; trichloroethylene, TCE; and tetrachloroethylene, PCE) on soil nitrogen cycle and microbial counts were investigated using volcanic ash soil with different fertilizations. All the solvents significantly inhibited the activity of the cycle under the sealed conditions with 10 to 50 mg/g (dry soil) solvents added. No significant difference between the solvents, and between fertilization plots, was observed. Nitrate ion was not accumulated, and instead, ammonium ion was highly accumulated in the presence of the solvents. Nitrite ion was partially detected, while l-glutaminase activity was inhibited. The growths of ammonification, nitritation, nitratation and denitrification bacteria, and filamentous fungi were significantly inhibited in the presence of 10 mg/g (dry soil) of the solvents. 
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Kuo, Jimmy, Daniel Liu y Chorng-Horng Lin. "Functional Prediction of Microbial Communities in Sediment Microbial Fuel Cells". Bioengineering 10, n.º 2 (3 de febrero de 2023): 199. http://dx.doi.org/10.3390/bioengineering10020199.

Texto completo
Resumen
Sediment microbial fuel cells (MFCs) were developed in which the complex substrates present in the sediment could be oxidized by microbes for electron production. In this study, the functional prediction of microbial communities of anode-associated soils in sediment MFCs was investigated based on 16S rRNA genes. Four computational approaches, including BugBase, Functional Annotation of Prokaryotic Taxa (FAPROTAX), the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, were applied. A total of 67, 9, 37, and 38 functional features were statistically significant. Among these functional groups, the function related to the generation of precursor metabolites and energy was the only one included in all four computational methods, and the sum total of the proportion was 93.54%. The metabolism of cofactor, carrier, and vitamin biosynthesis was included in the three methods, and the sum total of the proportion was 29.94%. The results suggested that the microbial communities usually contribute to energy metabolism, or the metabolism of cofactor, carrier, and vitamin biosynthesis might reveal the functional status in the anode of sediment MFCs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Dillard, Lillian R., Dawson D. Payne y Jason A. Papin. "Mechanistic models of microbial community metabolism". Molecular Omics 17, n.º 3 (2021): 365–75. http://dx.doi.org/10.1039/d0mo00154f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Gray, T. R. G. y G. A. Codd. "Aspects of Microbial Metabolism and Ecology." Journal of Applied Ecology 23, n.º 1 (abril de 1986): 357. http://dx.doi.org/10.2307/2403111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Fitzpatrick, Paul F. "The enzymes of microbial nicotine metabolism". Beilstein Journal of Organic Chemistry 14 (31 de agosto de 2018): 2295–307. http://dx.doi.org/10.3762/bjoc.14.204.

Texto completo
Resumen
Because of nicotine’s toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized forArthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon–nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Wu, Bo, Feifei Liu, Wenwen Fang, Tony Yang, Guang-Hao Chen, Zhili He y Shanquan Wang. "Microbial sulfur metabolism and environmental implications". Science of The Total Environment 778 (julio de 2021): 146085. http://dx.doi.org/10.1016/j.scitotenv.2021.146085.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Amend, J. P., C. Saltikov, G. S. Lu y J. Hernandez. "Microbial Arsenic Metabolism and Reaction Energetics". Reviews in Mineralogy and Geochemistry 79, n.º 1 (1 de enero de 2014): 391–433. http://dx.doi.org/10.2138/rmg.2014.79.7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Sun, Jing, Michaela A. Mausz, Yin Chen y Stephen J. Giovannoni. "Microbial trimethylamine metabolism in marine environments". Environmental Microbiology 21, n.º 2 (3 de diciembre de 2018): 513–20. http://dx.doi.org/10.1111/1462-2920.14461.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía