Siga este enlace para ver otros tipos de publicaciones sobre el tema: Micro Electro Mechanical Systems.

Artículos de revistas sobre el tema "Micro Electro Mechanical Systems"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Micro Electro Mechanical Systems".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Motamedi, M. Edward. "Micro-opto-electro-mechanical systems". Optical Engineering 33, n.º 11 (1 de noviembre de 1994): 3505. http://dx.doi.org/10.1117/12.181572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Xie, Huikai y Frederic Zamkotsian. "Editorial for the Special Issue on Optical MEMS". Micromachines 10, n.º 7 (7 de julio de 2019): 458. http://dx.doi.org/10.3390/mi10070458.

Texto completo
Resumen
Optical micro-electro-mechanical systems (MEMS), micro-opto-electro-mechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micron or millimeter scale [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Xu, Kaikai, Lukas W. Snyman, Jean-Luc Polleux, Hongda Chen y Guannpyng Li. "Silicon Light-Emitting Device with Application in on-Chip Micro-opto-electro-mechanical and Chemical-opto-electro Micro Systems". International Journal of Materials, Mechanics and Manufacturing 3, n.º 4 (2015): 282–86. http://dx.doi.org/10.7763/ijmmm.2015.v3.211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mamilla, Venkata Ramesh y Kommuri Sai Chakradhar. "Micro Machining for Micro Electro Mechanical Systems (MEMS)". Procedia Materials Science 6 (2014): 1170–77. http://dx.doi.org/10.1016/j.mspro.2014.07.190.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ravichandran, Niranjani y R. Subhashini. "Micro electro mechanical systems in nephrology". International Journal of Bioinformatics Research and Applications 17, n.º 5 (2021): 434. http://dx.doi.org/10.1504/ijbra.2021.10043923.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ravichandran, Niranjani y R. Subhashini. "Micro electro mechanical systems in nephrology". International Journal of Bioinformatics Research and Applications 17, n.º 5 (2021): 434. http://dx.doi.org/10.1504/ijbra.2021.120198.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gauthier, Robert C., R. Niall Tait y Mike Ubriaco. "Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications". Applied Optics 41, n.º 12 (20 de febrero de 2002): 2361. http://dx.doi.org/10.1364/ao.41.002361.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Helveg, S. "Micro-Electro-Mechanical Systems for Electron Microscopy in Catalysis". Microscopy and Microanalysis 19, S2 (agosto de 2013): 1494–95. http://dx.doi.org/10.1017/s143192761300946x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Cho, Chong Du y Byung Ha Lee. "Analysis of Electro-Statically Driven Micro-Electro-Mechanical Systems". Key Engineering Materials 306-308 (marzo de 2006): 1247–52. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.1247.

Texto completo
Resumen
In this paper, a methodology of modeling and simulating the electro-statically driven micro-electromechanical systems (MEMS) is presented, utilizing topography data with an arbitrary structure. In the methodology, the mask layout and process recipe of a device are first generated and the model then discretized by an auto-mesh generation for the finite element analysis. Finally the analysis is performed to solve the Laplace and the dynamic equation at a time. The methodology is applied to an electro-statically driven comb-drive as a test vehicle for verification.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Meng, Guang, Wen-Ming Zhang, Hai Huang, Hong-Guang Li y Di Chen. "Micro-rotor dynamics for micro-electro-mechanical systems (MEMS)". Chaos, Solitons & Fractals 40, n.º 2 (abril de 2009): 538–62. http://dx.doi.org/10.1016/j.chaos.2007.08.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zhou, Lianqun, Yihui Wu, Ping Zhang, Ming Xuan, Zhenggang Li y Hongguang Jia. "Micro-spectrophotometer based on micro electro-mechanical systems technology". Frontiers of Mechanical Engineering in China 3, n.º 1 (marzo de 2008): 37–43. http://dx.doi.org/10.1007/s11465-008-0001-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

JIANG, Zhuangde. "Special Micro-electro-mechanical Systems Pressure Sensor". Journal of Mechanical Engineering 49, n.º 06 (2013): 187. http://dx.doi.org/10.3901/jme.2013.06.187.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ardito, Raffaele, Claudia Comi, Alberto Corigliano y Attilio Frangi. "Solid damping in micro electro mechanical systems". Meccanica 43, n.º 4 (10 de enero de 2008): 419–28. http://dx.doi.org/10.1007/s11012-007-9105-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Ardito, Raffaele, Claudia Comi, Alberto Corigliano y Attilio Frangi. "Solid damping in micro electro mechanical systems". Meccanica 43, n.º 5 (23 de mayo de 2008): 557. http://dx.doi.org/10.1007/s11012-008-9137-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

SHI, F., P. RAMESH y S. MUKHERJEE. "DYNAMIC ANALYSIS OF MICRO-ELECTRO-MECHANICAL SYSTEMS". International Journal for Numerical Methods in Engineering 39, n.º 24 (30 de diciembre de 1996): 4119–39. http://dx.doi.org/10.1002/(sici)1097-0207(19961230)39:24<4119::aid-nme42>3.0.co;2-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gilewski, Marian. "Micro-Electro-Mechanical Systems in Light Stabilization". Sensors 23, n.º 6 (8 de marzo de 2023): 2916. http://dx.doi.org/10.3390/s23062916.

Texto completo
Resumen
This article discusses application considerations in the micro-electro-mechanical system’s optical sensor. Furthermore, the provided analysis is limited to application issues occurring in research or industrial applications. In particular, a case was discussed where the sensor was used as a feedback signal source. Its output signal is used to stabilize the flux of an LED lamp. Thus, the function of the sensor was the periodic measurement of the spectral flux distribution. The application problem of such a sensor is the output analogue signal conditioning. This is necessary to perform analogue-to-digital conversion and further digital processing. In the discussed case, design limitations come from the specifics of the output signal. This signal is a sequence of rectangular pulses, which can have different frequencies, and their amplitude varies over a wide range. The fact such a signal must be conditioned additionally discourages some optical researchers from using such sensors. The developed driver allows measurement using an optical light sensor in the band from 340 nm to 780 nm with a resolution of about 12 nm; in the range of flux values from about 10 nW to 1 μW, and frequencies up to several kHz. The proposed sensor driver was developed and tested. Measurement results are presented in the paper’s final part.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bordatchev, Evgueni V. "Electro-thermally driven microgrippers for micro-electro-mechanical systems applications". Journal of Micro/Nanolithography, MEMS, and MOEMS 4, n.º 2 (1 de abril de 2005): 023011. http://dx.doi.org/10.1117/1.1899312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Lei, Yi-ming, Li Chen y Zhi-yu Wen. "Micro-electro-mechanical systems-based micro-electromagnetic vibration energy harvester". Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 228, n.º 4 (16 de diciembre de 2013): 184–88. http://dx.doi.org/10.1177/1740349913510294.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Greiff, Michael, Uzzal Binit Bala y W. Mathis. "Hybrid Numerical Simulation of Micro Electro Mechanical Systems". PIERS Online 2, n.º 3 (2006): 270–74. http://dx.doi.org/10.2529/piers050907123514.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

De Pasquale, Giorgio. "Additive Manufacturing of Micro-Electro-Mechanical Systems (MEMS)". Micromachines 12, n.º 11 (8 de noviembre de 2021): 1374. http://dx.doi.org/10.3390/mi12111374.

Texto completo
Resumen
Recently, additive manufacturing (AM) processes applied to the micrometer range are subjected to intense development motivated by the influence of the consolidated methods for the macroscale and by the attraction for digital design and freeform fabrication. The integration of AM with the other steps of conventional micro-electro-mechanical systems (MEMS) fabrication processes is still in progress and, furthermore, the development of dedicated design methods for this field is under development. The large variety of AM processes and materials is leading to an abundance of documentation about process attempts, setup details, and case studies. However, the fast and multi-technological development of AM methods for microstructures will require organized analysis of the specific and comparative advantages, constraints, and limitations of the processes. The goal of this paper is to provide an up-to-date overall view on the AM processes at the microscale and also to organize and disambiguate the related performances, capabilities, and resolutions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Lang, Walter y Hermann Sandmaier. "Micro Electro Mechanical Systems: From Research to Applications". Japanese Journal of Applied Physics 37, Part 1, No. 12B (30 de diciembre de 1998): 7047–51. http://dx.doi.org/10.1143/jjap.37.7047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

YU, Biqiang. "MULTIDISCIPLINARY DESIGN OPTIMIZATION OF MICRO ELECTRO MECHANICAL SYSTEMS". Chinese Journal of Mechanical Engineering 42, supp (2006): 65. http://dx.doi.org/10.3901/jme.2006.supp.065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Leclercq, J. L., C. Seassal y P. Viktorovitch. "InP-based micro-opto-electro-mechanical systems (MOEMS)". Le Journal de Physique IV 09, PR2 (febrero de 1999): Pr2–123. http://dx.doi.org/10.1051/jp4:1999213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ho, Chih-Ming y Yu-Chong Tai. "MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS". Annual Review of Fluid Mechanics 30, n.º 1 (enero de 1998): 579–612. http://dx.doi.org/10.1146/annurev.fluid.30.1.579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Esashi, Masayoshi. "Micro/nano electro mechanical systems for practical applications". Journal of Physics: Conference Series 187 (1 de septiembre de 2009): 012001. http://dx.doi.org/10.1088/1742-6596/187/1/012001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

LUO, Fan, Fei FENG, Bin ZHAO, Bowen TIAN, Xuelei YANG, Haimei ZHOU y Xinxin LI. "Research progress of micro-electro-mechanical systems micro gas chromatography columns". Chinese Journal of Chromatography 36, n.º 8 (2018): 707. http://dx.doi.org/10.3724/sp.j.1123.2018.02015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Camou, Serge, Agnès Tixier-Mita, Hiroyuki Fujita y Teruo Fujii. "Integration of Microoptics in Bio-Micro-Electro-Mechanical Systems towards Micro-Total-Analysis Systems". Japanese Journal of Applied Physics 43, n.º 8B (25 de agosto de 2004): 5697–705. http://dx.doi.org/10.1143/jjap.43.5697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

SUIZU, Yoshiharu, Kazuo ASAUMI y Shunsuke MOCHIZUKI. "Simulation Technology for Micro-Electro-Mechanical-Systems (MEMS) Development". Journal of the Vacuum Society of Japan 56, n.º 10 (2013): 409–16. http://dx.doi.org/10.3131/jvsj2.56.409.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Delavari, Hadi, Ayyob Asadbeigi y Omid Heydarnia. "Synchronization of Micro-Electro-Mechanical-Systems in Finite Time". Interdisciplinary journal of Discontinuity, Nonlinearity and Complexity 4, n.º 2 (junio de 2015): 173–85. http://dx.doi.org/10.5890/dnc.2015.06.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Shoji, Shuichi. "Materials for Micro Electro Mechanical Systems Elements and Micromachining." Materia Japan 34, n.º 1 (1995): 17–24. http://dx.doi.org/10.2320/materia.34.17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Lau, Gih-Keong y Milan Shrestha. "Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS)". Micromachines 8, n.º 6 (21 de junio de 2017): 194. http://dx.doi.org/10.3390/mi8060194.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Epstein, Alan H. "Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines". Journal of Engineering for Gas Turbines and Power 126, n.º 2 (1 de abril de 2004): 205–26. http://dx.doi.org/10.1115/1.1739245.

Texto completo
Resumen
The confluence of market demand for greatly improved compact power sources for portable electronics with the rapidly expanding capability of micromachining technology has made feasible the development of gas turbines in the millimeter-size range. With airfoil spans measured in 100’s of microns rather than meters, these “microengines” have about 1 millionth the air flow of large gas turbines and thus should produce about one millionth the power, 10–100 W. Based on semiconductor industry-derived processing of materials such as silicon and silicon carbide to submicron accuracy, such devices are known as micro-electro-mechanical systems (MEMS). Current millimeter-scale designs use centrifugal turbomachinery with pressure ratios in the range of 2:1 to 4:1 and turbine inlet temperatures of 1200–1600 K. The projected performance of these engines are on a par with gas turbines of the 1940s. The thermodynamics of MEMS gas turbines are the same as those for large engines but the mechanics differ due to scaling considerations and manufacturing constraints. The principal challenge is to arrive at a design which meets the thermodynamic and component functional requirements while staying within the realm of realizable micromachining technology. This paper reviews the state of the art of millimeter-size gas turbine engines, including system design and integration, manufacturing, materials, component design, accessories, applications, and economics. It discusses the underlying technical issues, reviews current design approaches, and discusses future development and applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bhatia, Dinesh, BabluLal Rajak, Meena Gupta y Arun Mukherjee. "Application of Micro-Electro-Mechanical Systems as Neural Interface". Journal of Advances in Biomedical Engineering and Technology 2, n.º 2 (20 de noviembre de 2015): 1–10. http://dx.doi.org/10.15379/2409-3394.2015.02.02.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Higo, Yakichi. "Characterization of Micro/Nano Electro-Mechanical Systems (MEMS/NEMS)". Fatigue Fracture of Engineering Materials and Structures 28, n.º 8 (agosto de 2005): 655. http://dx.doi.org/10.1111/j.1460-2695.2005.00933.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Singh, Kanika y Kyung Chun Kim. "Clinical Bio-Micro-Electro-Mechanical Systems: Technology and Applications". Sensor Letters 7, n.º 6 (1 de diciembre de 2009): 1013–24. http://dx.doi.org/10.1166/sl.2009.1246.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ma, Yunfei, Shubham Shubham, Michael Kuntzman, Jen-I. Cheng y Jing Ouyang. "A compact high performance micro-electro-mechanical systems microphone". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de marzo de 2023): A145. http://dx.doi.org/10.1121/10.0018449.

Texto completo
Resumen
This paper reports on the development of a MEMS capacitive microphone design with 72 dBA signal-to-noise-ratio (SNR) in a compact 3.4 × 2.3 × 0.7 mm3package. The design incorporates a circular diaphragm disc suspended on one end of the cantilever beam. The diaphragm, under the bias conditions, is supported using peripheral and center protrusions extended from the back plate. The design optimization is targeted to achieve high sensitivity and low damping noise to achieve maximum SNR possible in the mentioned footprint. Finite element modeling (FEM) combined with the lumped element circuit modeling have been implemented to realize the microphone performance. The results have been validated against the measurement with very good correlation of sensitivity, noise and total harmonic distortion (THD). With the sensitivity of −35 dBV (ref. 1 V/Pa at 1 kHz) and acoustic overload point of 134 dBSPL, this is one of the highest performing MEMS analog microphone reported today. Therefore, it is very well suited for audio applications such as mobile phones, true wireless stereo (TWS) earphones, hearing aids and automotive, which demand miniaturized size, low cost and high performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kanthamani, S., S. Raju y V. Abhaikumar. "Applications of Micro Electro Mechanical Systems in Microwave Circuits and Systems". IETE Journal of Research 54, n.º 2 (marzo de 2008): 175–87. http://dx.doi.org/10.1080/03772063.2008.10876197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Chernyavsky, D. I. y D. D. Chernyavsky. "Kinematic calculation of micro mirror elements in micro electro-mechanical systems (MEMS)". Omsk Scientific Bulletin, n.º 175 (2021): 5–11. http://dx.doi.org/10.25206/1813-8225-2021-175-5-11.

Texto completo
Resumen
Currently, the development and application of micro machines is an important direction in the development of microelectromechanical systems (MEMS) technologies. In these devices, electromechanical energy conversion occurs, as a result of which forces arise that carry out mechanical work within the dimensions of the microcircuit case. The paper considers the kinematic calculation of the design of a micromirror with a reflective layer of high optical quality of the surface for deflecting the reflected laser beam. By changing the angle of inclination of the micromirror, the laser beam enters the various input channels of the optical sensor. In this case, a control signal is generated for the further operation of the microcircuit. Thus, the micromirror performs the function of a switch of input optical channels, connecting in various combinations certain input or output elements of the microcircuit for further processing. The article presents the calculation of the kinematic parameters of the mechanical structure of the micro mirror. Practical recommendations are given for choosing the optimal range of variation of the micro mirror tilt angles in order to increase the strength of its structure, as well as to reduce the power of the mechanical drive of the micro machine required to change the micro mirror tilt angles
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Zhang, Ping, Chun Lei Sun y Qing’en Li. "Study and Simulation of Electro-Mechanical Sensor". Advanced Materials Research 282-283 (julio de 2011): 440–43. http://dx.doi.org/10.4028/www.scientific.net/amr.282-283.440.

Texto completo
Resumen
The relevant introduction development of the micro electromechanical systems (MEMS) is carried out in this paper. The pressure sensor is an important component of micro electromechanical systems (MEMS). Many aspects of the pressure sensor are studied,simulated and analyzed by us. The principle of work of the pressure sensor is elaborated in details and the material selection is studied also. The correlative performance indexes, such as precision and the repeatability of pressure sensor, are explored. In the following part of this paper, through the finite element simulation software, the analytic study of some performance parameters of the sensor chip is carried out in detail. Through the analysis, we find that the sensor designed here has many advantages.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Akkus, Nihat, Fatih Yücel y Ersin Toptas. "Vehicle Electro-Mechanical Brake System: A Mechatronic Application". Solid State Phenomena 147-149 (enero de 2009): 480–85. http://dx.doi.org/10.4028/www.scientific.net/ssp.147-149.480.

Texto completo
Resumen
An electro-mechanic brake system, which has the potentiality to be used in future cars, has been studied and a prototype of the brake system has been produced. The electro-mechanic brake system has different working principles then hydraulic brake system. Hydraulic force or air pressure is used to obtain the braking force on the wheels in the hydraulic braking systems, whereas a solenoid valve push force is used to stop the car in electro-mechanic systems. A censor controlled the RPM of the wheel and the data was passed to a micro controller and micro controller produced PWM signals according to obtained signal. Thus, push force of the solenoid valve was controlled by micro controlled according to the braking ratio. If the wheel slows down the turning speed, then micro controller stops to sending PWM signals and solenoid is relaxed until wheels turns again. This cycle continues until the all wheels are stopped. A prototype of the system has been constructed and tested. The initial results indicated that the system can be potentially used in the automotives.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Faudzi, Ahmad Athif Mohd, Yaser Sabzehmeidani y Koichi Suzumori. "Application of Micro-Electro-Mechanical Systems (MEMS) as Sensors: A Review". Journal of Robotics and Mechatronics 32, n.º 2 (20 de abril de 2020): 281–88. http://dx.doi.org/10.20965/jrm.2020.p0281.

Texto completo
Resumen
This paper presents a review of the current applications of Micro-Electro-Mechanical Systems (MEMS) in the robotics and industrial applications. MEMS are widely used as actuators or sensors in numerous respects of our daily life as well as automation lines and industrial applications. Intersection of founding new polymers and composites such as silicon and micro manufacturing technologies performing micro-machining and micro-assembly brings about remarkable growth of application and efficacy of MEMS devices. MEMS indicated huge improvement in size reduction, higher reliability, multi-functionality, customized design, and power usage. Demonstration of various devices and technologies utilized in robotics and industrial applications are illustrated in this article along with the use and the role of silicon in the development of the sensors. Some future trends and its perspectives are also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Djakov, Tatjana, Ivanka Popovic y Ljubinka Rajakovic. "Micro-electro-mechanical systems (MEMS): Technology for the 21st century". Chemical Industry 68, n.º 5 (2014): 629–41. http://dx.doi.org/10.2298/hemind131008091d.

Texto completo
Resumen
Micro-electro-mechanical systems (MEMS) are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zhang, Yanni, Yiman Han, Xin Zhao, Zhen Zhao y Jing Pang. "Applying numerical control to analyze the pull-in stability of MEMS systems". Thermal Science 28, n.º 3 Part A (2024): 2171–78. http://dx.doi.org/10.2298/tsci2403171z.

Texto completo
Resumen
The micro-electro-mechanical system is widely used for energy harvesting and thermal wind sensor, its efficiency and reliability depend upon the pull-in instability. This paper studies a micro-electro-mechanical system using He-Liu [34] formulation for finding its frequency-amplitude relationship. The system periodic motion, pull-in instability and pseudo-periodic motion are discussed. This paper offers a new window for security monitoring of the system reliable operation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Krisnawan, K. P. "Hopf bifurcation of actuated micro-beam nonlinear vibrations in micro electro mechanical systems". Journal of Physics: Conference Series 1320 (octubre de 2019): 012002. http://dx.doi.org/10.1088/1742-6596/1320/1/012002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Choi, Ju Chan, Young Chan Choi, June Kyoo Lee y Seong Ho Kong. "Micro-Electro-Mechanical-Systems-Based Micro-Ro-Boat Utilizing Steam as Propulsion Power". Japanese Journal of Applied Physics 51, n.º 6S (1 de junio de 2012): 06FL12. http://dx.doi.org/10.7567/jjap.51.06fl12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Choi, Ju Chan, Young Chan Choi, June Kyoo Lee y Seong Ho Kong. "Micro-Electro-Mechanical-Systems-Based Micro-Ro-Boat Utilizing Steam as Propulsion Power". Japanese Journal of Applied Physics 51 (20 de junio de 2012): 06FL12. http://dx.doi.org/10.1143/jjap.51.06fl12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Yao, Shi-Chune, Xudong Tang, Cheng-Chieh Hsieh, Yousef Alyousef, Michael Vladimer, Gary K. Fedder y Cristina H. Amon. "Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development". Energy 31, n.º 5 (abril de 2006): 636–49. http://dx.doi.org/10.1016/j.energy.2005.10.016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

TSENG, AMPERE A., WILLIAM C. TANG, YUNG-CHENG LEE y JAMES ALLEN. "NSF 2000 Workshop on Manufacturing of Micro-Electro-Mechanical Systems". Journal of Materials Processing & Manufacturing Science 8, n.º 4 (1 de abril de 2000): 292–360. http://dx.doi.org/10.1106/nbdb-dkvq-mjhr-fetc.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Tuan, Pham Anh, Nguyen Van Thien, Nguyen Van Tho y Trinh Van Minh. "Micro-Opto-Electro-Mechanical Transducers for Measurement and Control Systems". International Journal of Electrical and Electronics Engineering 5, n.º 10 (25 de octubre de 2018): 7–11. http://dx.doi.org/10.14445/23488379/ijeee-v5i10p103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

ZHAO, Zhao-Hui, Li WANG, Xian-Yun GAN, Chang-An ZHU, Cheng-Gui LIU, Jun ZHENG y Guo-Ming XIE. "Development of Electrochemical Array Based on Micro Electro-Mechanical Systems". CHINESE JOURNAL OF ANALYTICAL CHEMISTRY (CHINESE VERSION) 41, n.º 4 (2013): 621. http://dx.doi.org/10.3724/sp.j.1096.2013.20618.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía