Índice
Literatura académica sobre el tema "Mica – Datation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mica – Datation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mica – Datation"
Jolicoeur, Serge, Mireille Bouchard y Christian De Kimpe. "Interprétation géopédologique du manteau d’altération de la Blue Ridge et des collines du Piedmont appalachien de Virginie (É.-U.A.)". Géographie physique et Quaternaire 49, n.º 2 (30 de noviembre de 2007): 217–37. http://dx.doi.org/10.7202/033038ar.
Texto completoTesis sobre el tema "Mica – Datation"
Gyomlai, Thomas. "In-situ Rb-Sr dating, a precise and efficient tool in metamorphic petrology". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS267.pdf.
Texto completoDating a specific pressure-temperature-time-deformation-fluid event is a major issue in metamorphic petrology where rocks are strongly chemically modified, deformed and displaced from their protoliths. Because recrystallization and diffusion processes occur at the sub-millimeter scale and because of the significant presence of zonations and inclusions in metamorphic minerals, the use of in-situ methods is mandatory in order to analyze the chemical and isotopic variations related to different events recorded within a mineral or mineral generation. This work focuses on the implementation of the Rb-Sr in-situ dating method of mica and its application to metamorphic petrology. In-situ analyzes are allowed thanks to a laser ablation system coupled to a mass spectrometer containing a reaction cell between two quadrupoles, which allows the separation of isobaric isotopes 87Rb and 87Sr using a reactive gas (NO2). This method, with the in-situ 40Ar-39Ar dating, are the only two in-situ methods that can date a dominant and ubiquitous phase of metamorphic rocks (mica) over a wide range of metamorphic grades and ages. Furthermore, the Rb-Sr in-situ method requires little preparation compared to 40Ar-39Ar, and is therefore a highly competitive new method. Biotite provides exhumation ages in medium to high-temperature metamorphic settings and white mica provides recrystallization ages in high pressure-low temperature contexts. The application to 3 contexts (79 ages) of this method coupled with other dating methods (U-Pb titanite, 40Ar-39Ar mica) as well as structural and petrogeochemical data allowed a better understanding of the tectonometamorphic events affecting the studied areas: 1) A Cimmerian collisional metamorphism (∼200 Ma) in central Iran corresponding to shortening outboard of the main suture, followed by exhumation since ∼170 Ma in an extensive context. 2) Several punctual and heterogeneous metasomatic episodes (∼36 Ma and ∼12 Ma) affecting a "mélange" unit during exhumation on the island of Syros in Greece. 3) A diachronous maximum burial (∼36-52 Ma) of the different units of the Schistes Lustrés in the Western Alps. These results illustrate the possibilities of the Rb-Sr in-situ dating method as well as its efficient application to metamorphic petrology
Beaudoin, Alexandre. "Signification des âges ⁴⁰Ar/³⁹ Ar le long de détachements crustaux : exemples de l'île d'Ikaria (Cyclades, Grèce) et du massif du Tende (Corse alpine, France)". Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2027/document.
Texto completoNumerous studies have shown the impact of deformation on the K-Ar system, and therefore ⁴⁰Ar/³⁹ Ar ages. These studies often do not provide data characterizing deformation and are limited to a comparison of the ages obtained indeformed rocks and an undeformed protolith. The first part of this study thus consisted in studying the strain distribution at different scales and finely describing strain intensity gradients. The study focused on two granitic protoliths, associated respectively with a difference in age between the formation of the protolith and the age of the tectonometamorphic events that is low (<1 Ma ; Ikaria Island) or inversely high (> 240 Ma ; Tenda massif). In the firstcase study, deformation results in a 40Ar loss in K-bearing phases, interpreted as resulting from the reduction of diffusion domains sizes which is not accentuated by an increasing strain intensity. In the second case study, the 40Arinheritance of the protolith results in fluids and extraneous 40Ar circulation through the actively deforming structures,ages in phengite being increasingly older approaching the most localizing structures in some sections, while others behave in an opposite way, more in line with the progressive strain localization in time. For both cases, interpretation of ages obtained in the newly formed phases during deformation is ambiguous between cooling, crystallization and mixing, and requires a detailed examination of the data confronted with the possible closing temperatures.Interpretations indicate for the Ikaria case study a strain localization in less than 1-3 Ma along a second order gradient of about ten meters in thickness. Strain localization at the scale of a shear zone occurs more rapidly in the case of a post-orogenic exhumation of a MCC (~ 7 Ma) than in the case of the exhumation of continental material involved in a subduction prism (~ 14-10 Ma)
Airaghi, Laura. "Etude pétro-chronologique de la chaîne des Longmen Shan (Tibet oriental) : héritage géologique et implications pour la géodynamique actuelle". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU029/document.
Texto completoOne of the major challenges in Earth Sciences is understanding how the continental lithosphere deforms in convergent settings, according to which timescales. For its elevation and extension the Tibetan plateau is an ideal natural laboratory for the study of deep crustal processes in active convergent settings. The rise and thickening of the Tibetan plateau has generally been related to the only collision between the Eurasian and Indian plates during the Cenozoic. However, this interpretation has been recently put into question by apparently contrasting geophysical and geological features observed at different locations on the plateau.The aim of this PhD is to quantify the importance of the geological inheritance in the long-term and short-term deformation of an active thrust belt, focusing on the Longmen Shan orogen, the most enigmatic border of the Tibetan plateau. In the Longmen Shan (eastern Tibet) the Tibetan crust is over thickened (>60 km), the tectonic activity is localized along lithospheric faults -as demonstrated by the occurrence of the Mw 7.9 Wenchuan (2008) and Mw 6.6 Lushan (2013) earthquakes- and a high topography survives despite low convergence rates measured by GPS (<3 mm/yr). These observations are hardly reconcilable in a unique model of crustal deformation, suggesting a contribution of the geological inheritance from the geological history preceding the India-Asia collision.A petro-chronological approach that combines microstructural observations, compositional mapping of major and accessory mineral phases, thermodynamic modelling, in-situ 40Ar/39Ar dating, Ar diffusion modelling and in-situ U/Pb-Th allanite dating was applied to metamorphic rocks on each side of the major faults that strike parallel to the belt. This high-resolution study shows that in garnet-bearing rocks of the internal units of the belt matrix minerals record different stages of the metamorphic path in their composition. This is due to an incomplete chemical re-equilibration explained by a variable fluid availability during metamorphism. Different stages of metamorphism and fluid-assisted reactions sequences are also recorded in the 40Ar/39Ar signal of micas and in the composition and textures of the accessory phases.The understanding of petrological processes at the small scale was combined with field observations to quantify the Mesozoic thickness of the Tibetan crust at > 30 km and to unravel a metamorphic jump of greater than 150°C across the major faults, inherited from the Mesozoic tectonics. While internal units of the belt were strongly deformed, decoupled from the basement and metamorphosed at T ~ 580-600°C (P ~11 kbar), external units were less deformed and experienced lower temperatures conditions (T < 400°C, P < 5 kbar). The partial exhumation of the crystalline basement from c. 20 km depth along the major fault (in both internal and external units) occurred at c. 120-140 Ma during a previously poorly documented tectonic event.The multi-method approach applied on a wide geographical area and on a large time interval enabled to quantify the rates and conditions of the different stages of the maturation of the belt; internal units reached the thermal relaxation at ~600°C 40 Ma after the beginning of the propagation of the orogenic load. The basement was re-activated 40 Ma later, at similar thermal conditions than its sedimentary cover. The Mesozoic geological inheritance is therefore a key element in the present structure of the belt and strongly controlled the rheological and structural state of the upper crust at the moment of the Cenozoic re-activation.The petro-chronological study of different segments of the belt showed an along-strike metamorphic segmentation of the Longmen Shan inherited from the Mesozoic. This segmentation corresponds to the present fault segmentation, underlying the potential role of inherited structure in controlling the geographic distribution of the recent earthquakes
Zhu, Ze-Ying. "Étude minéralogique des granites de métaux rares en Chine méridionale : étude de cas du granit de Songshugang et de Huangshan, province de Jiangxi". Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0141.
Texto completoRare metals, including niobium (Nb), tantalum (Ta), tungsten (W) and tin (Sn), are defined as “strategic resources” or “critical materials”. For this work, we studied the Huangshan Nb deposit and Songshugang Ta deposit, in the Lingshan complex, Jiangxi Province, South China, as examples. The rocks from Huangshan granite are classified in two categories based on the occurrence of Nb-rich mica and the amount of columbite-tantalites minerals: medium-grained granites with Nb-rich mica and devoided of columbite-tantalites and fine-grained granites and pegmatites rich in columbite-tantalite minerals. Columbite-tantalite minerals are classified as columbite-(Fe), and characterized by complex zonings with various “go and back” processes, indicating that their formation is linked to multi-mixing processes of two different magma sources. The medium-grained granites in the Huangshan suite differed from the other granites of the Lingshan complex by their mica compositions: lithian annite (MA granite) and “protolithionite” (MP granite). They are characterized by elevated Nb contents (average 144 ppm in MP and 158 ppm in MA) and very high Nb/Ta ratios (average 15.3 in MP and 31.2 in MA). Niobium is mainly hosted in the micas, with an average Nb content of 1,347 ppm in the lithian annite, and 884 ppm in the “protolithionite”. Such contents are the highest ever reported in magmatic-related micas. With an estimated content of ~80 kt Nb, the Huangshan granites represent a new style of potential Nb resource. The Songshugang albite granite is found in the west of Lingshan complex and is specifically enriched in Ta. The major Songshugang albite granite is buried and covered by layers of K-feldspar granite, greisen and pegmatite. All the granites are strongly peraluminous. The compositions of columbite-tantalite minerals, the zircons and cassiterites are constant and display a similar two-stage texture. Petrographic features indicate that the early-stage columbite and zircon were formed in magmatic environment, whereas the later-stage of rare-element minerals were influenced by fluid fluxes at the magmatic-hydrothermal transitional stage. Micas also show a two-stage texture. The Rb-enrichment in the margin of the zinnwaldite is the result of magmatic fractionation, as also demonstrated by the decrease of Nb contents (16.3-108 ppm compare with core of 109-313 ppm). The invariable low contents of Ta, W and Sn demonstrate that the residual melt has no influence on later post-magmatic stages, contrary to the columbite minerals. Finally, in-situ U-Pb dating of zircon and columbite-tantalite by SIMS and LA-ICP-MS indicates that both Huangshan and Songshugang granites were emplaced at ca. 130 Ma during Later Yanshanian (or Cretaceous) and contemporary with the formation of the Lingshan complex. This result indicates that the Later Yanshanian is a prospective geological period for Nb-Ta deposits, and this result enlarges the time frame of rare-metal mineralization
Leonard, Jean-Marie. "Les filons à micas et tourmalines du Haut-Himalaya au Népal central : témoins des transferts magmatiques entre les migmatites du Haut-Himalaya et les granites de type Manaslu". Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE1A004.
Texto completoLn Central Nepal , the High Himalayan dikes, formed both during compressional and extensional tectonic, have 3 main preferred orientations, viz. N120-N150°E, N80-N110°E and N 10-N40°E. Most of them have a leucogranitic type composition. Discrimination of dikes (as well as leucosomes and granites) and identification of source rocks has been made using first K20 and Fe-Mg silicates mineralogy, then trace elements and Sr isotopes. The data imply various amount of fluids during anatexis and along the himalayan range : when water-saturated melting, an high melting ratio is reached and the different source levels (greywackes, schist, gneisses) lead to relatively homogeneous dikes and to Manaslu type granites (biotite predominant on tourmaline, medium K20 content). When low amount of external fluids (Machhapuchare area), less silicate liquids are produced, of diverse compositions, according to the variety of source rocks (biotite and/or tourmaline bearing dikes, very low to hi gh K20 content ). Same fractionnated crystallization of biotite, tourmaline and plagioclase (Fe and Rb increase, Mg, Ba and Sr decrease) occured in the different melts during their ascent. Meanwhile, Ca (plus Ba and Sr) contamination from the calcic levels of the Tibetan Slab lead to precipitation of more calcic plagioclase, modification of the Al/Si ratio of the melts, with at turn recrystallization of less aluminous biotite, enhancing of the muscovite formation and some variations in the tourmaline composition. Empiric estimations of Li20, F et Fe3+/(Fe2+ + Fe3+) contents in himalayan micas and calculated values of Fe3+ /(Fe2+ + Fe3+) and H20 in tourmalines suggest an increase of oxydation conditions from the Formation I to the Manaslu granite. K/Ar and 4OAr/39Ar ages, obtained from several dikes and close host rocks, are used to discuss Tibetan Slab cooling in the light of regional scale hydrothermal perturbations and radiogenic argon excess process
Leonard, Jean-Marie. "Les filons à micas et tourmalines du Haut-Himalaya au Népal central : témoins des transferts magmatiques entre les migmatites du Haut-Himalaya et les granites de type Manaslu". Grenoble 1, 1997. http://www.theses.fr/1997GRE10289.
Texto completoLn Central Nepal , the High Himalayan dikes, formed both during compressional and extensional tectonic, have 3 main preferred orientations, viz. N120-N150°E, N80-N110°E and N 10-N40°E. Most of them have a leucogranitic type composition. Discrimination of dikes (as well as leucosomes and granites) and identification of source rocks has been made using first K20 and Fe-Mg silicates mineralogy, then trace elements and Sr isotopes. The data imply various amount of fluids during anatexis and along the himalayan range : when water-saturated melting, an high melting ratio is reached and the different source levels (greywackes, schist, gneisses) lead to relatively homogeneous dikes and to Manaslu type granites (biotite predominant on tourmaline, medium K20 content). When low amount of external fluids (Machhapuchare area), less silicate liquids are produced, of diverse compositions, according to the variety of source rocks (biotite and/or tourmaline bearing dikes, very low to hi gh K20 content ). Same fractionnated crystallization of biotite, tourmaline and plagioclase (Fe and Rb increase, Mg, Ba and Sr decrease) occured in the different melts during their ascent. Meanwhile, Ca (plus Ba and Sr) contamination from the calcic levels of the Tibetan Slab lead to precipitation of more calcic plagioclase, modification of the Al/Si ratio of the melts, with at turn recrystallization of less aluminous biotite, enhancing of the muscovite formation and some variations in the tourmaline composition. Empiric estimations of Li20, F et Fe3+/(Fe2+ + Fe3+) contents in himalayan micas and calculated values of Fe3+ /(Fe2+ + Fe3+) and H20 in tourmalines suggest an increase of oxydation conditions from the Formation I to the Manaslu granite. K/Ar and 4OAr/39Ar ages, obtained from several dikes and close host rocks, are used to discuss Tibetan Slab cooling in the light of regional scale hydrothermal perturbations and radiogenic argon excess process
Djama, Louis-Marie. "Le massif granitique de Mfoubou et le socle métamorphique de Guena (chaîne du Mayombe, Congo). Pétrologie - Géochimie - géochronologie". Nancy 1, 1988. http://www.theses.fr/1988NAN10116.
Texto completoLama, Chafik. "Apport de la méthode K-ar à la compréhension de l'histoire géologique des granitoïdes birimiens du Liptako (Niger Occidental) et des leucogranites à deux micas de Tagragra d'AKKA (Anti-Atlas Occidental, Maroc)". Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL062N.
Texto completoLeonard, Jean Marie. "Les filons à micas et tourmalines du Haut Himalaya au Népal central.Témoins des transferts magmatiques entre les migmatites du Haut Himalaya et les granites de type Manaslu". Phd thesis, 1997. http://tel.archives-ouvertes.fr/tel-00642000.
Texto completo