Literatura académica sobre el tema "Métaux de transition – Surfaces"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Métaux de transition – Surfaces".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Métaux de transition – Surfaces"
Lefebvre, Gaétan, Patrick D’Hugues y Christophe Poinssot. "Transition énergétique, « intensité matières » et criticité". Revue Générale Nucléaire, n.º 4 (julio de 2021): 22–25. http://dx.doi.org/10.1051/rgn/20214022.
Texto completoBoucekkine, A., A. Le Beuze, JY Saillard y R. Lissillour. "Structure électronique de phosphures de métaux de transition". Journal de Chimie Physique 88 (1991): 2107–21. http://dx.doi.org/10.1051/jcp/1991882107.
Texto completoMérenne-Schoumaker, Bernadette. "Métaux rares et métaux précieux : une multiplicité de productions, d’acteurs et de besoins". Questions internationales 117, n.º 1 (14 de marzo de 2023): 56–68. http://dx.doi.org/10.3917/quin.117.0056.
Texto completoMarie, Xavier, Bernhard Urbaszek y Thierry Amand. "Les dichalcogénures de métaux de transition, nouveaux matériaux bidimensionnels". Reflets de la physique, n.º 50 (septiembre de 2016): 21–25. http://dx.doi.org/10.1051/refdp/201650021.
Texto completoVARENNES, E., D. BLANC, A. AZAÏS, L. GUERET, C. LAGARRIGUE y J. M. CHOUBERT. "Opportunités de récupération des métaux en station d’épuration". Techniques Sciences Méthodes 9, n.º 9 (20 de septiembre de 2021): 85–100. http://dx.doi.org/10.36904/tsm/202109085.
Texto completoLamblin, Véronique. "La demande de métaux critiques liés à la mobilité électrique". Futuribles N° 460, n.º 3 (15 de abril de 2024): 84–92. http://dx.doi.org/10.3917/futur.460.0084.
Texto completoBotella, Hélène, Gustavo Stadthagen, Chantal de Chastellier y Olivier Neyrolles. "Un rôle nouveau des métaux de transition dans l’immunité antimicrobienne". médecine/sciences 28, n.º 1 (enero de 2012): 18–21. http://dx.doi.org/10.1051/medsci/2012281006.
Texto completoElkamel, K., M. Elidrissi, A. Yacoubi, A. Nadiri y S. Abouarnadasse. "Déshydrogénation de l'isopropanol catalysée par quelques oxynitrures de métaux de transition". Journal de Chimie Physique 94 (1997): 522–34. http://dx.doi.org/10.1051/jcp/1997940522.
Texto completoCastel, A., P. Riviére, J. Satgé y M. Ahbala. "Complexes de métaux de transition (Cr, W) a ligande germyléne fonctionnel". Journal of Organometallic Chemistry 331, n.º 1 (septiembre de 1987): 11–21. http://dx.doi.org/10.1016/s0022-328x(00)98909-5.
Texto completoGreenough, John D. y Kevin MacKenzie. "Igneous Rock Associations 18. Transition Metals in Oceanic Island Basalt: Relationships with the Mantle Components". Geoscience Canada 42, n.º 3 (29 de julio de 2015): 351. http://dx.doi.org/10.12789/geocanj.2015.42.071.
Texto completoTesis sobre el tema "Métaux de transition – Surfaces"
Barreteau, Cyrille. "Morphologie et énérgetique des surfaces vicinales de métaux de transition". Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006882.
Texto completoelecrtonique et de potentiels empiriques. Une attention particuliere
est dediee a l'etude de la stabilite des surfaces vicinales vis a vis du facettage.
Vivek, Manali. "Etats topologiques aux surfaces de perovskites d'oxydes de métaux de transition". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS216/document.
Texto completoThe subject of topology in oxides, in particular at the surfaces of perovskite oxides like SrTiO₃, or at the interface of LaA1O₃/SrTiO₃ will be investigated in this thesis. Both compounds, at their (001) oriented surfaces, contain a metallic state confined to a few nanometers at the surface. In addition, we will show that there exist certain three band crossings around which perturbations will cause an inverted and gapped band spectrum to appear. These will lead to topological edge states which can be detected via induced superconductivity as in the case of topological quantum wells or superconductor-semiconductor nanowires. Next, the (111) oriented surface of LaA1O₃/SrTiO₃ will be studied where Hall transport measurements reveal a one to two carrier transition via electrostatic doping. An explanation based on a tight binding modelling including Hubbard U correlations, will be proposed which will give rise to band crossings between sub-bands promoting topological states. Finally, an ab-initio study of CaTiO₃ will be performed to explain the metallic state which exists at its (001) oriented surface and to predict magnetism in the system. CaTiO₃ is different from the other compounds studied previously, due to the large rotation and tilting of the oxygen octahedra surrounding the Ti, which complicates the picture. The structure with and without oxygen vacancies will be studied in-depth to provide details about the conduction band and their orbital characters
Mesboua, Nouara. "Caractérisation de surfaces solides par adsorption : physisorption sur solides lamellaires et métaux, chimisorption d'oxygène sur métaux de transition". Vandoeuvre-les-Nancy, INPL, 1987. http://www.theses.fr/1987NAN10215.
Texto completoBruneel, Pierre. "Electronic and spintronic properties of the interfaces between transition metal oxides". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP047.
Texto completoThe anomalous transport properties of transition metal oxides, in particular the surface of SrTiO₃ or at the interface between SrTiO₃ and LaAlO₃ is investigated in this thesis. These systems host two-dimensional electron gases. Nonlinear Hall Effect measurements suggest that several species of carriers are present in these systems, and that their population is varying on a nontrivial manner upon electrostatic doping. The role of the electrostatics properties of the electron gas and of the electronic correlations are discussed in this light. Next we discuss the spin to charge conversion of these systems thanks to tight-binding modeling and linear response theory. The complex interplay between atomic spin-orbit coupling and the inversion symmetry breaking at the interface leads to a complex spin-orbital-momentum locking of the electrons, inducing spin textures. These spin textures are responsible for the appearance of the Edelstein and Spin Hall Effect in these heterostructures and are characteristic of the multi-orbital character of these electronic systems. Finally an ab initio study of STO/LAO/STO heterostructures is performed to explain experimental evidence of new ways to produce an electron gas at this interface. The respective roles of the chemistry, electrostatics and defects are discussed
Lutsen, Laurent. "Polycarbosilanes fonctionnels précurseurs de céramiques. Activation par des complexes de métaux de transition". Montpellier 2, 1994. http://www.theses.fr/1994MON20198.
Texto completoSoukiassian, Patrick. "Contribution à l'étude des propriétés électroniques des systèmes alcalins-métaux de transition : application à l'adsorption de Cs et de O+ Cs sur les surfaces de W (100), Mo (100),Ta (100) et Mo (110)". Paris 11, 1985. http://www.theses.fr/1985PA112047.
Texto completoCesium adsorption on (100) faces of tungsten, molybdenum and tantalum for coverages between 0 and 1 monolayer is studied by angle resolved ultraviolet photoemission spectroscopy (ARUPS° using synchrotron radiation and by electron energy loss spectroscopy (EELS). The electronic surface states located near the Fermi level, are not destroyed under césiation, and are shifted by 1 eV for W(100), 0. 9 eV for Mo(100) and 0. 8 eV for Ta(100) to higher binding energies. These results are in very good agreements with theoretical ab-initio calculations performed by FLAPW method. These results are understood by the formation of a strongly polarized covalent bond between d-like surface states and Cs-6s derived valence states. The man electron energy loss peaks are interpreted as 6s → 6p interband transition. On Mo(110), the bonding between Cs and substrate is similar to this observed on Mo(100). ARUPS study of cesium chemisorption reveals the existence, near the Fermi level, of a surface state not affected either by oxygen or carbon monoxide. The study of Cs 5p levels in the coadsorption of oxygen and cesium on Mo(100) and W(100) indicates a charge transfer from Cs to oxygen. On O + Cs/Mo(110), the charge transfer is weaker. Finally, on the 4f core levels of W(100) and Ta(100), a donor adsorbate (Cs) induces surface states shifts to lower binding energies
Morin, Cédric. "Etude quantique de l'activité des surfaces de métaux de transition pour la transformation des molécules aromatiques par catalyse hétérogène". Lyon, École normale supérieure (sciences), 2004. http://www.theses.fr/2004ENSL0278.
Texto completoTran, Quang Thuan. "Amination, phosphorylation spontanée ou électro assistée de surface de carbone vitreux pour l'élaboration de nouvelles électrode ligands". Rennes 1, 2011. http://www.theses.fr/2011REN1S122.
Texto completoThe objective of this thesis is to graft ligands on a support for facilitating the recovering and recycling of the catalyst. Furthermore, by using the electrode as a support, the redox state of the catalyst can be easily modulated by controlling the applied potential. We can therefore utilize one catalyst system for many reactions. The phosphine ligands, highly efficient in catalysis, were grafted on the surface of glassy carbon electrode using free radical electro-grafting methods. These methods are convenient procedure allowing the formation of robust linkage between the surface and the phosphine ligand moiety. These radicals are electrochemically generated by electro-oxidation amine or by electro-reduction of aryl diazonium salt generated from the diazotization in-situ of the aromatic amine. In this work, a major drawback which is the sensitivity of the phosphine ligand toward the chemical and electrochemical oxidation, was solved by the introduction of a borane moiety as a phosphines protecting group. We synthesized different aminophosphine-borane ligands and their corresponding organometallic complexes (Mo, Mn, Ru) both in solution and in solid-state, when grafted onto surfaces. These complexes were characterized by different techniques including NMR (¹H, ¹³C, ³¹P), X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. A promising preliminary result was obtained in the electro-catalysis of the oxidation reaction of an alcohol
Raouafi, Faical. "Etude de la stabilité des surfaces vicinales des métaux de transition à partir de leur structure électronique et vibrationnelle". Phd thesis, Université Paris Sud - Paris XI, 2002. http://tel.archives-ouvertes.fr/tel-00002142.
Texto completoRaouafi, Fayçal. "Etude de la stabilité des surfaces vicinales des métaux de transition à partir de leurs structures électronique et vibrationnelle". Paris 11, 2002. https://tel.archives-ouvertes.fr/tel-00002142.
Texto completoThis theoretical work is dedicated to the study of vicinal surfaces of Rh, Pd and Cu and, in particular, of their stability with respect to faceting. The manuscript includes three parts. It starts with the calculation of their surface energies, on a rigid lattice at 0K, using a tight-binding method with a basis set including s, p and d atomic valence orbitals. The energies of isolated steps are deduced from this calculation. They allow to determine the shape of adislands built by homoepitaxy on low-index surfaces, as well as step-step interactions which exhibit an oscillatory behaviour. This behaviour is strongly depending on the types of steps and surfaces. Kink energies are also computed by the same method. The electronic structure is briefly described. Then the vibrational properties of vicinal surfaces of Copper are studied using a semi-empirical potential which leads to good results for the relaxation of surfaces and describes correctly, in the harmonic approximation, their projected phonon band structure. It is thus possible to determine vibrational thermodynamical quantities, such as the root mean square displacement and the free energy. Finally, the stability of vicinal surfaces is discussed with semi-empirical potentials and with the calculation of electronic structure. It is shown that the stability can be inverted as a function of the potential range and that the atomic relaxation plays in favour of the stabilization of the surface but does not change qualitatively the results. Contrary to the semi-empirical potentials, electronic structure calculations open up the possibility of a large variety of behaviours, including a possible faceting of a vicinal surface into other vicinal surfaces. This phenomenon is due to electronic oscillatory step-step interactions. Finally, it is proven that the temperature has a minor effect on the stability of vicinal surfaces, at least up to room temperature
Libros sobre el tema "Métaux de transition – Surfaces"
Mathey, F. Introduction à la chimie moléculaire de transition. Paris: Edition Marketing, 1991.
Buscar texto completoStephan, Loskutov y Wiley online library, eds. Strained metallic surfaces: Theory, mechanical behavior and fatigue strength. Weinheim: Wiley-VCH, 2009.
Buscar texto completoH, Yersin y Bray K. L, eds. Transition metal and rare earth compounds. Berlin: Springer, 2001.
Buscar texto completoJ, Pesek Joseph, Leigh Ivan E, Royal Society of Chemistry (Great Britain). y Symposium on Chemically Modified Surfaces (5th : 1993 : Malvern, Penn.), eds. Chemically modified surfaces. Cambridge: Royal Society of Chemistry, 1994.
Buscar texto completo1946-, Salahub Dennis R., Russo Nino 1947-, North Atlantic Treaty Organization. Scientific Affairs Division. y NATO Advanced Study Institute on Metal-Ligand Interactions: from Atoms, to Clusters, to Surfaces (1991 : Cetraro, Italy), eds. Metal-ligand interactions: From atoms, to clusters, to surfaces. Dordrecht: Kluwer Academic, 1992.
Buscar texto completoVasilʹev, M. A. Struktura i dinamika poverkhnosti perekhodnykh metallov. Kiev: Nauk. dumka, 1988.
Buscar texto completoR, Moser William, Slocum D. W. 1933- y American Chemical Society. Catalysis and Surface Science Secretariat., eds. Homogeneous transition metal catalyzed reactions: Developed from a symposium. Washington, DC: The Society, 1992.
Buscar texto completoDonaldson type invariants for algebraic surfaces: Transition of moduli stacks. Berlin: Springer, 2009.
Buscar texto completoPrince, N. P. SEXAFS and NISXW studies of adsorbates on transition metal surfaces. [s.l.]: typescript, 1989.
Buscar texto completoFundamental transition metal organometallic chemistry. Monterey, Calif: Brooks/Cole, 1985.
Buscar texto completoCapítulos de libros sobre el tema "Métaux de transition – Surfaces"
Lannoo, Michel y Paul Friedel. "Transition Metal Surfaces". En Atomic and Electronic Structure of Surfaces, 56–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02714-1_3.
Texto completoBertoni, C. M., G. Cappellini, F. Finocchi y P. Monachesi. "7.2.2 Transition metals". En Physics of Solid Surfaces, 311–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_96.
Texto completoWoods, R. "Characterization of Sulfide Mineral Surfaces". En Electrochemistry in Transition, 561–73. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_35.
Texto completoWollschläger, J. "Phase transition: metals: Au". En Physics of Solid Surfaces, 346–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_79.
Texto completoWollschläger, J. "Phase transition: metals: Ga". En Physics of Solid Surfaces, 353–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_80.
Texto completoWollschläger, J. "Phase transition: metals: Ir". En Physics of Solid Surfaces, 355–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_81.
Texto completoWollschläger, J. "Phase transition: metals: Mo". En Physics of Solid Surfaces, 357. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_82.
Texto completoWollschläger, J. "Phase transition: metals: Pt". En Physics of Solid Surfaces, 358–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_83.
Texto completoWollschläger, J. "Phase transition: metals: W". En Physics of Solid Surfaces, 362–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_84.
Texto completovan Beijeren, H. y I. Nolden. "The Roughening Transition". En Structure and Dynamics of Surfaces II, 259–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46591-8_7.
Texto completoActas de conferencias sobre el tema "Métaux de transition – Surfaces"
Dris, Antonis y Mark W. Johnson. "Transition on Concave Surfaces". En ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53352.
Texto completoJohnson, Mark W. "Predicting Transition on Concave Surfaces". En ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90455.
Texto completoEmerson, Preston, Matthew Searle, Julie Crockett y Daniel Maynes. "Poster: Transition Boiling on Superhydrophobic Surfaces". En 69th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2016. http://dx.doi.org/10.1103/aps.dfd.2016.gfm.p0042.
Texto completoSAKANIWA, Y., I. HASEGAWA y H. SHIMA. "ISING PHASE TRANSITION ON CURVED SURFACES". En Proceedings of the International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708687_0031.
Texto completoRiley, Stephen, Mark W. Johnson y John C. Gibbings. "Boundary Layer Transition of Strongly Concave Surfaces". En ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-321.
Texto completoThomas, O. "Les siliciures de métaux de transition en microélectronique : propriétés mécaniques et contraintes induites au cours de la formation en phase solide". En PlastOx 2007 - Mécanismes et Mécanique des Interactions Plasticité - Environnement. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/ptox/2009020.
Texto completoHachem, Farouk y Mark W. Johnson. "A Boundary Layer Transition Correlation for Concave Surfaces". En ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-222.
Texto completoShahpar, S. y S. Shahpar. "Transition correlations for hypersonic flows over swept surfaces". En 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2013.
Texto completoRoberts, S. K. y M. I. Yaras. "Boundary-Layer Transition in Separation Bubbles Over Rough Surfaces". En ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53667.
Texto completoPeters, Jörg y Jianhua Fan. "The Projective Linear Transition Map for Constructing Smooth Surfaces". En 2010 Shape Modeling International (SMI). IEEE, 2010. http://dx.doi.org/10.1109/smi.2010.26.
Texto completoInformes sobre el tema "Métaux de transition – Surfaces"
Batzill, Matthias. Photocatalysis of Modified Transition Metal Oxide Surfaces. Office of Scientific and Technical Information (OSTI), febrero de 2018. http://dx.doi.org/10.2172/1423046.
Texto completoFEIBELMAN, PETER J. y GARY LEE KELLOGG. Surfactant-Modified Diffusion on Transition-Metal Surfaces. Office of Scientific and Technical Information (OSTI), diciembre de 1999. http://dx.doi.org/10.2172/750256.
Texto completoTong, Yuye. Exploring Electrocatalysis of Methane on Transition Metal Surfaces. Office of Scientific and Technical Information (OSTI), noviembre de 2020. http://dx.doi.org/10.2172/1832240.
Texto completoPerkins, Leslie. Diffusion of adatoms on face-centered cubic transition metal surfaces. Office of Scientific and Technical Information (OSTI), mayo de 1994. http://dx.doi.org/10.2172/10161694.
Texto completoBarteau, M. Selectivity of the reactions of oxygenates on transition metal surfaces. Office of Scientific and Technical Information (OSTI), enero de 1989. http://dx.doi.org/10.2172/5420355.
Texto completoHoffmann, Roald y John Wilkins. Simple Adsorbates on Transition Metal Surfaces: A Joint Chemical and Physical Approach. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1989. http://dx.doi.org/10.21236/ada205726.
Texto completoMadix, R. J. The dynamics of adsorption on clean and adsorbate-modified transition metal surfaces. Office of Scientific and Technical Information (OSTI), junio de 1991. http://dx.doi.org/10.2172/5911113.
Texto completoStupakov, Gennady. Image Formation by Incoherent and Coherent Transition Radiation from Flat and Rough Surfaces. Office of Scientific and Technical Information (OSTI), marzo de 2012. http://dx.doi.org/10.2172/1035803.
Texto completoDunkerton, L., C. Hinckley, J. Tyrrell y P. Robinson. Interactions of sulfur-containing compounds with transition metal clusters and metal surfaces III. Office of Scientific and Technical Information (OSTI), enero de 1989. http://dx.doi.org/10.2172/7019171.
Texto completoFEIBELMAN, PETER J. y GARY LEE KELLOGG. Surfactant-modified diffusion on transition-metal surfaces (reprinted with the addition of the appendices). Office of Scientific and Technical Information (OSTI), marzo de 2000. http://dx.doi.org/10.2172/752083.
Texto completo