Literatura académica sobre el tema "Metallic lithium"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Metallic lithium".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Metallic lithium"
Zhang, Rui, An Li, Lei Zhang y Xun Yong Jiang. "Research on Metallic Silicon Used as Lithium Ion Battery Anode Material". Advanced Materials Research 463-464 (febrero de 2012): 764–68. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.764.
Texto completoShi, Lei, Zou Peng, Ping Ning, Xin Sun, Kai Li, Huan Zhang y Tao Qu. "Clean and Efficient Recovery of Lithium from Al-Li Alloys via Vacuum Fractional Condensation". Separations 10, n.º 7 (26 de junio de 2023): 374. http://dx.doi.org/10.3390/separations10070374.
Texto completoAuborn, J. J. y Y. L. Barberio. "Lithium Intercalation Cells Without Metallic Lithium: and". Journal of The Electrochemical Society 134, n.º 3 (1 de marzo de 1987): 638–41. http://dx.doi.org/10.1149/1.2100521.
Texto completoPark, Jesik, Jaeo Lee y C. K. Lee. "Synthesis of Lithium Thin Film by Electrodeposition from Ionic Liquid". Applied Mechanics and Materials 217-219 (noviembre de 2012): 1049–52. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1049.
Texto completoLi, Wenjun, Hao Zheng, Geng Chu, Fei Luo, Jieyun Zheng, Dongdong Xiao, Xing Li et al. "Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation". Faraday Discuss. 176 (2014): 109–24. http://dx.doi.org/10.1039/c4fd00124a.
Texto completoManickam, M. y M. Takata. "Lithium intercalation cells LiMn2O4/LiTi2O4 without metallic lithium". Journal of Power Sources 114, n.º 2 (marzo de 2003): 298–302. http://dx.doi.org/10.1016/s0378-7753(02)00586-4.
Texto completoFauteux, D. y R. Koksbang. "Rechargeable lithium battery anodes: alternatives to metallic lithium". Journal of Applied Electrochemistry 23, n.º 1 (enero de 1993): 1–10. http://dx.doi.org/10.1007/bf00241568.
Texto completoFu, Qiang Wei y Xun Yong Jiang. "Lithium Storage Property of Metallic Silicon Treated by Mechanical Alloying". Materials Science Forum 847 (marzo de 2016): 29–32. http://dx.doi.org/10.4028/www.scientific.net/msf.847.29.
Texto completoHeilingbrunner, Andrea y Gernot Stollhoff. "Abinitiocorrelation calculation for metallic lithium". Journal of Chemical Physics 99, n.º 9 (noviembre de 1993): 6799–809. http://dx.doi.org/10.1063/1.465823.
Texto completoCheng, Hao, Yangjun Mao, Yunhao Lu, Peng Zhang, Jian Xie y Xinbing Zhao. "Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium–oxygen cells". Nanoscale 12, n.º 5 (2020): 3424–34. http://dx.doi.org/10.1039/c9nr09749j.
Texto completoTesis sobre el tema "Metallic lithium"
Deavin, Oliver. "Thermodynamic tuning of lithium borohydride using various metallic sources". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50398/.
Texto completoMa, Miaomiao. "Layered LiMn0.4Ni0.4Co0.2O2 as cathode for lithium batteries". Diss., Online access via UMI:, 2005.
Buscar texto completoNumerals in chemical formula in title are "subscript" in t.p. of printed version. Includes bibliographical references.
Viik, Rickard. "Surface layer formation on the surfaces of metallic lithium, copper and iron". Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-257571.
Texto completoDrury, William James. "Quantitative microstructural and fractographic characterization of AE-Li/FP metal matrix composite". Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/19958.
Texto completoBonatti, Colin. "Testing and modeling of the viscoplastic and fracture behavior of metallic foils used in lithium-ion batteries". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101332.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 37-39).
Aluminum 1235-H18 foils with sub-micron grain dimensions are often used as current collectors in Li-ion batteries. Due to their contribution to the structural integrity of batteries under impact loading, their plastic and fracture response is investigated in detail. Using a novel micro-tensile testing device with a piezoelectric actuator, dogbone specimens with a 1.25 mm wide and 5.7 mm long gage section are tested for three different in-plane material orientations and for strain rates ranging from 10-5/s to 10-2/s. It was found that the stress at a proof strain of 2% increased by about 25% from 160MPa to 200MPa within this range of strain rates. Furthermore, pronounced inplane anisotropy is observed as reflected by Lankford ratios variations from 0.2 to 1.5 .A material model is proposed which borrows elements of the anisotropic Yld2000-2d plasticity model and integrates these into a basic viscoplasticity framework that assumes the multiplicative decomposition of the equivalent stress into a strain and strain rate dependent contributions. The an isotropic fracture response is characterized for a strain rate of 10-3 /s using notched tension and Hasek punch experiments. It is found that a simple stress state independent version of the anisotropic MMC fracture initiation model provides a reasonable approximation of the observed experimental results.
by Colin Bonatti.
S.M.
Cluzeau, Benoît. "Développement de batteries lithium-ion « Tout solide » pour véhicules électriques". Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3071.
Texto completoImprovements in the performances of Li-ion batteries in the past two decades, has enabled the introduction of many electric cars on the market. However, demands regarding the safety, autonomy, and fast charging require the development of new and more efficient technologies.It was in this context that the RAISE 2024 project, in which this thesis is part of, was founded. This collaboration between ARKEMA, SAFT and the University of Pau and Adour Countries aims to develop a lithium ion battery with a solid electrolyte. The development of such a system has a double objective: the reinforcement of safety during operation, and the use of new electrode materials with higher capacity such as metallic lithium.To achieve this objective, two electrolytes were studied in this thesis. The first consists of a gelled electrolyte obtained by crosslinking of a polymer matrix. It provides good performance in terms of ionic conductivity at room temperature (10-3 S/cm). More than 700 cycles were achieved with this electrolyte in a battery cell before reaching 80% of initial capacity. The impact of polymer matrix on performance was studied through a series of electrochemical tests and surface analysis (XPS). Finally, safety tests (nail penetration) carried out on cells filled with this electrolyte show a significant reduction of energy released.Finally, a second ionic conductor was studied. It comes in the form of a polymer membrane, plasticized with an ionic liquid and a solvent. This membrane exhibits ionic conductivity above 10-4 S/cm at room temperature. Coupled with a gel electrolyte in electrodes to improve interfacial contact, the membrane shows a high resistance to lithium dendrites. A cell using this electrolyte and composed of NMC 811 as positive electrode and lithium metal as negative electrode performed 200 cycles at a rate of C/5, D/2 before losing 20% of its initial capacity
Santoki, Jay [Verfasser] y B. [Akademischer Betreuer] Nestler. "Phase-field modeling on the diffusion-driven processes in metallic conductors and lithium-ion batteries / Jay Santoki ; Betreuer: B. Nestler". Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1225401070/34.
Texto completoXu, Chunbao. "Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites". Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07302006-231517/.
Texto completoTeja, Amyn, Committee Chair ; Kohl, Paul, Committee Member ; Liu, Meilin, Committee Member ; Nair,Sankar, Committee Member ; Rousseau, Ronald, Committee Member.
Chaumont-Olive, Pauline. "Synthèse et développement de la réactivité des triorganozincates de lithium chiraux en addition nucléophile énantiosélective et application à la synthèse de produits bioactifs". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR069/document.
Texto completoThe development of new asymetric methodologies have been widely explored during the last twenty years and in particular through organometallic reagents. Although these processes lead to excellent results in terms of enantiodiscrimination, the goal of this thesis was to develop new tools: cheap, chemoselective and allowing the access to the desired compounds with high yields and enantiomeric excesses. In this context, chiral lithium triorganozincates have been studied. Enantioselective nucleophilic 1,2 alkylation and arylation of aldehydes reactions, including (R)-N-(2-iso-butoxybenzyl)-1-phenylethanamine as the chiral ligand, have been optimized toward various aldehydes. The expected secondary chiral alcohols have been obtained with good yields (up to 83%) and high enantiomeric excesses (up to 99%).These processes have been then applied to the asymmetric synthesis of naturals and/or bioactive compounds as Spiromastilactone A, (R)-Neobenodine and (R)-Orphenadrine. Finally, the access to new amino-alcohols have been developed with the ultimate goal to engage those species as the chiral partner when reacting chiral lithium zincates with imines
Ren, Yu. "Applications of ordered mesoporous metal oxides : energy storage, adsorption, and catalysis". Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1705.
Texto completoLibros sobre el tema "Metallic lithium"
Innovative Antriebe 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894.
Texto completoCapítulos de libros sobre el tema "Metallic lithium"
Ross, Robert B. "Lithium Li". En Metallic Materials Specification Handbook, 209–10. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3482-2_23.
Texto completoSugiyama, G., G. Zerah y B. J. Alder. "Metallic Lithium by Quantum Monte Carlo". En Strongly Coupled Plasma Physics, 229–38. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1891-0_22.
Texto completoHassan, Afaq, Saima Nazir, M. Sagir, Tausif Ahmad y M. B. Tahir. "Metallic Li Anode: An Introduction". En Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications, 169–86. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2796-8_10.
Texto completoZhao, Changtai, Kieran Doyle-Davis y Xueliang Sun. "Lithium Batteries Application of Atomically Dispersed Metallic Materials". En Atomically Dispersed Metallic Materials for Electrochemical Energy Technologies, 307–29. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003153436-9.
Texto completoHarrison-Marchand, Anne, Nicolas Duguet, Gabriella Barozzino-Consiglio, Hassan Oulyadi y Jacques Maddaluno. "Dynamics of the Lithium Amide/Alkyllithium Interactions: Mixed Dimers and Beyond". En Organo-di-Metallic Compounds (or Reagents), 43–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/3418_2014_75.
Texto completoSong, Ling Yue, Hui Li y Jinglong Liang. "Thermodynamic Analysis of the Recovery of Metallic Mn from Waste Lithium Manganese Battery Using the Molten Salt Method". En The Minerals, Metals & Materials Series, 1539–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50349-8_133.
Texto completoZhang, Shaoguang, Wen-Xiong Zhang y Zhenfeng Xi. "Organo-di-Lithio Reagents: Cooperative Effect and Synthetic Applications". En Organo-di-Metallic Compounds (or Reagents), 1–41. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/3418_2013_71.
Texto completoVogel, Katrin. "Ein Stoff macht Zukunft. Zum sozialen Leben von Lithium am Salar de Uyuni, Bolivien". En Kritische Metalle in der Großen Transformation, 197–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44839-7_10.
Texto completoSaha, B., R. J. H. Wanhill, N. Eswara Prasad, G. Gouda y K. Tamilmani. "Airworthiness Certification of Metallic Materials". En Aluminum-lithium Alloys, 537–54. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-401698-9.00016-1.
Texto completo"Hydrogen in Aluminum–Lithium Alloys". En Advances in Metallic Alloys, 37–61. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315369525-4.
Texto completoActas de conferencias sobre el tema "Metallic lithium"
Saager, Stefan. "PVD of Metallic Lithium Layers and Lithiated Silicon Layers for High-Performance Anodes in Lithium Ion Batteries". En 65th Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2022. http://dx.doi.org/10.14332/svc22.proc.0008.
Texto completoLutey, Adrian H. A., Alessandro Fortunato, Alessandro Ascari, Simone Carmignato y Leonardo Orazi. "Pulsed Laser Ablation of Lithium Ion Battery Electrodes". En ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3967.
Texto completoZhang, Qifeng y Yi Ding. "A New Solid Electrolyte with A High Lithium Ionic Conductivity for Solid-State Lithium-Ion Batteries". En WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0519.
Texto completoDas, Susanta K. y Abhijit Sarkar. "Synthesis and Performance Evaluation of a Solid Electrolyte and Air Cathode for a Rechargeable Lithium-Air Battery". En ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59448.
Texto completoAzam, Reem, Tasneem ElMakki, Sifani Zavahir, Zubair Ahmad, Gago Guillermo Hijós y Dong Suk Han. "Lithium capture in Seawater Reverse Osmosis (SWRO) Brine using membrane-based Capacitive Deionization (MCDI) System". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0013.
Texto completoBarakat, Elsie, Maria-Pilar Bernal, Roland Salut y Fadi Baida. "Metallic Annular Apertures Arrays filled by Lithium Niobate to Enhance Non-Linear Conversion: Theory and Fabrication". En Frontiers in Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/fio.2011.fthp6.
Texto completoBo, Luyu, Jiali Li, Xinyu Zhang, Teng Li y Zhenhua Tian. "Investigation of Water Effects on Surface Acoustic Wave Transmission". En ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96673.
Texto completoZhao, Nanzhu, Wei Li, Wayne W. Cai y Jeffrey A. Abell. "A Method to Study Fatigue Life of Ultrasonically Welded Lithium-Ion Battery Tab Joints Using Electrical Resistance". En ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4159.
Texto completoMiley, G. H., C. Castano, A. Lipson, S. O. Kim y N. Luo. "Progress in Development of a Low Energy Reaction Cell for Distributed Power Applications". En 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22148.
Texto completoKocer, Bilge y Lisa Mauck Weiland. "Experimental Characterization of Direct Assembly Process Based Ionic Polymer Transducers in Sensing". En ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5009.
Texto completoInformes sobre el tema "Metallic lithium"
Colon-Mercado, H., D. Babineau, M. Elvington, B. Garcia-Diaz, J. Teprovich y A. Vaquer. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket. Office of Scientific and Technical Information (OSTI), octubre de 2015. http://dx.doi.org/10.2172/1224027.
Texto completoLiventseva, Hanna. THE MINERAL RESOURCES OF UKRAINE. Ilustre Colegio Oficial de Geólogos, mayo de 2022. http://dx.doi.org/10.21028/hl.2022.05.17.
Texto completoQu, Deyang. Developing an In-situ Formed Dynamic Protection Layer to Mitigate Lithium Interface Shifting: Preventing Dendrite Formation on Metallic Lithium Surface to Facilitate Long Cycle Life of Lithium Solid-State Batteries. Office of Scientific and Technical Information (OSTI), diciembre de 2022. http://dx.doi.org/10.2172/1907035.
Texto completo