Artículos de revistas sobre el tema "Metal-oxide solar cells"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Metal-oxide solar cells.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Metal-oxide solar cells".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Li, Shao-Sian y Chun-Wei Chen. "Polymer–metal-oxide hybrid solar cells". Journal of Materials Chemistry A 1, n.º 36 (2013): 10574. http://dx.doi.org/10.1039/c3ta11998j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Li, Shao-Sian, Yun-Yue Lin, Wei-Fang Su y Chun-Wei Chen. "Polymer/Metal Oxide Nanocrystals Hybrid Solar Cells". IEEE Journal of Selected Topics in Quantum Electronics 16, n.º 6 (noviembre de 2010): 1635–40. http://dx.doi.org/10.1109/jstqe.2010.2040948.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nguyen, Thanh Tai, Malkeshkumar Patel y Joondong Kim. "All-inorganic metal oxide transparent solar cells". Solar Energy Materials and Solar Cells 217 (noviembre de 2020): 110708. http://dx.doi.org/10.1016/j.solmat.2020.110708.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sealy, Cordelia. "Metal-oxide perovskite solar cells promise stability". Materials Today 21, n.º 5 (junio de 2018): 465. http://dx.doi.org/10.1016/j.mattod.2018.05.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kim, Sangho, Malkeshkumar Patel, Thanh Tai Nguyen, Junsin Yi, Ching-Ping Wong y Joondong Kim. "Si-embedded metal oxide transparent solar cells". Nano Energy 77 (noviembre de 2020): 105090. http://dx.doi.org/10.1016/j.nanoen.2020.105090.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lee, Dong-Gun, Saemon Yoon, HyeongWoo Lee, Hyosung Choi, Jeha Kim y Dong-Won Kang. "Semitransparent perovskite solar cells with exceptional efficiency and transmittance". Applied Physics Express 14, n.º 12 (29 de noviembre de 2021): 126504. http://dx.doi.org/10.35848/1882-0786/ac3803.

Texto completo
Resumen
Abstract A general approach to developing semitransparent perovskite solar cells (ST-PSCs) is to use a transparent metal oxide to replace opaque metal electrodes. However, the performance of such solar cells, unlike that of those using evaporated metal electrodes, deteriorates due to insufficient conductivity of the metal oxide, etc. Herein, a femtosecond laser patterning method is proposed to achieve the efficiency and transparency of ST-PSCs with a typical metal electrode and facilitates the control of transmittance by varying the opening ratio. While providing average visible transmittance > 46%, a certified power conversion efficiency of 8.22% was attained, which outperformed state-of-the-art ST-PSCs reported to date.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhu, L., G. Shao y J. K. Luo. "Numerical study of metal oxide heterojunction solar cells". Semiconductor Science and Technology 26, n.º 8 (8 de junio de 2011): 085026. http://dx.doi.org/10.1088/0268-1242/26/8/085026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhu, L., G. Shao y J. K. Luo. "Numerical study of metal oxide Schottky type solar cells". Solid State Sciences 14, n.º 7 (julio de 2012): 857–63. http://dx.doi.org/10.1016/j.solidstatesciences.2012.04.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Constantinou, Iordania, Nathan T. Shewmon, Chi Kin Lo, James J. Deininger, John R. Reynolds y Franky So. "Photodegradation of Metal Oxide Interlayers in Polymer Solar Cells". Advanced Materials Interfaces 3, n.º 23 (4 de noviembre de 2016): 1600741. http://dx.doi.org/10.1002/admi.201600741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Grilli, Maria Luisa. "Metal Oxides". Metals 10, n.º 6 (19 de junio de 2020): 820. http://dx.doi.org/10.3390/met10060820.

Texto completo
Resumen
Oxide materials in bulk and thin film form, and metal oxide nanostructures exhibit a great variety of functional properties which make them ideal for applications in solar cells, gas sensors, optoelectronic devices, passive optics, catalysis, corrosion protection, environmental protection, etc. [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Khan, Mujeeb, Muhammad Nawaz Tahir, Syed Farooq Adil, Hadayat Ullah Khan, M. Rafiq H. Siddiqui, Abdulrahman A. Al-warthan y Wolfgang Tremel. "Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications". Journal of Materials Chemistry A 3, n.º 37 (2015): 18753–808. http://dx.doi.org/10.1039/c5ta02240a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Holliman, Peter J., Arthur Connell, Eurig W. Jones y Christopher P. Kershaw. "Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells". Materials 13, n.º 4 (20 de febrero de 2020): 949. http://dx.doi.org/10.3390/ma13040949.

Texto completo
Resumen
Whilst the highest power conversion efficiency (PCE) perovskite solar cell (PSC) devices that have reported to date have been fabricated by high temperature sintering (>500 °C) of mesoporous metal oxide scaffolds, lower temperature processing is desirable for increasing the range of substrates available and also decrease the energy requirements during device manufacture. In this work, titanium dioxide (TiO2) mesoporous scaffolds have been compared with metal oxide oxidation catalysts: cerium dioxide (CeO2) and manganese dioxide (MnO2). For MnO2, to the best of our knowledge, this is the first time a low energy band gap metal oxide has been used as a scaffold in the PSC devices. Thermal gravimetric analysis (TGA) shows that organic binder removal is completed at temperatures of 350 °C and 275 °C for CeO2 and MnO2, respectively. By comparison, the binder removal from TiO2 pastes requires temperatures >500 °C. CH3NH3PbBr3 PSC devices that were fabricated while using MnO2 pastes sintered at 550 °C show slightly improved PCE (η = 3.9%) versus mesoporous TiO2 devices (η = 3.8%) as a result of increased open circuit voltage (Voc). However, the resultant PSC devices showed no efficiency despite apparently complete binder removal during lower temperature (325 °C) sintering using CeO2 or MnO2 pastes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Drăgan, Florin, Ørnulf Nordseth, Laurențiu Fara, Constantin Dumitru, Dan Crăciunescu, Vlad Muscurel y Paul Sterian. "Optical Modeling and Simulation of Tandem Metal Oxide Solar Cells". Annals of West University of Timisoara - Physics 60, n.º 1 (1 de agosto de 2018): 56–66. http://dx.doi.org/10.2478/awutp-2018-0006.

Texto completo
Resumen
AbstractAn investigation of silicon-based tandem solar cells incorporating Al-doped ZnO (AZO) and Cu2O metal oxides, via two of the most efficient methods of optical modeling, specifically ray tracing and transfer matrix algorithms, was performed. The simulations were conducted based on specialized software, namely Silvaco Atlas and MATLAB, as well as on OPAL2 simulation platform. The optical analysis involved the calculation of the spectral curves for reflectance, absorptance and transmittance for different thicknesses of the thin film layers constituting the cell. It was established the optimum thickness of the AZO layer based on the minimum reflectance and maximum transmittance. Moreover, several materials were investigated in order to determine the optimum buffer layer for the tandem solar cell, based on optical modeling. The optical parameters of the ZnO/Cu2O top subcell were optimized, in order to achieve the highest conversion efficiency of such heterojunction solar cell.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Qian, Rui, Junchen Liao, Guoping Luo y Hongbin Wu. "ITO-free organic solar cells with oxide/metal/oxide multilayer structure cathode". Organic Electronics 108 (septiembre de 2022): 106614. http://dx.doi.org/10.1016/j.orgel.2022.106614.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Fujii, Shunjiro, Kosei Hashiba, Tetsuo Shimizu, Yasushiro Nishioka y Hiromichi Kataura. "Semitransparent Inverted Organic Solar Cells Using an Oxide/metal/oxide Transparent Anode". Journal of Photopolymer Science and Technology 29, n.º 4 (2016): 547–51. http://dx.doi.org/10.2494/photopolymer.29.547.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Nordseth, Ørnulf, Raj Kumar, Kristin Bergum, Laurentiu Fara, Constantin Dumitru, Dan Craciunescu, Florin Dragan et al. "Metal Oxide Thin-Film Heterojunctions for Photovoltaic Applications". Materials 11, n.º 12 (19 de diciembre de 2018): 2593. http://dx.doi.org/10.3390/ma11122593.

Texto completo
Resumen
Silicon-based tandem solar cells incorporating low-cost, abundant, and non-toxic metal oxide materials can increase the conversion efficiency of silicon solar cells beyond their conventional limitations with obvious economic and environmental benefits. In this work, the electrical characteristics of a metal oxide thin-film heterojunction solar cell based on a cuprous oxide (Cu2O) absorber layer were investigated. Highly Al-doped n-type ZnO (AZO) and undoped p-type Cu2O thin films were prepared on quartz substrates by magnetron sputter deposition. The electrical and optical properties of these thin films were determined from Hall effect measurements and spectroscopic ellipsometry. After annealing the Cu2O film at 900 °C, the majority carrier (hole) mobility and the resistivity were measured at 50 cm2/V·s and 200 Ω·cm, respectively. Numerical modeling was carried out to investigate the effect of band alignment and interface defects on the electrical characteristics of the AZO/Cu2O heterojunction. The analysis suggests that the incorporation of a buffer layer can enhance the performance of the heterojunction solar cell as a result of reduced conduction band offset.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Chang, Xiao Ying y Qian Qiong Wu. "Photovoltaic Solar Cells with Metal Oxide Semiconductor Anode and Mutilayer". Applied Mechanics and Materials 209-211 (octubre de 2012): 1758–61. http://dx.doi.org/10.4028/www.scientific.net/amm.209-211.1758.

Texto completo
Resumen
Al doped zinc oxide (AZO) as anode for bulk-heterojunction [regioregular of poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PCBM)] organic solar cells was investigated. We got efficient flexible solar cells with a highly transparent and electrical conductive NiO film as hole-transporting layer (HTL) on optimized AZO substrate. The strcture of this kind of devices is PET/AZO/NiO/P3HT: PCBM /Al. The highest power conversion efficiency (PCE) on glass substrate is 3.15%, and 1.66% on flexible substrate. The physical and electrical properties of AZO thin film were discussed, and the device photovoltaic characteristics were investigated in detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Jyoti, Divya, Devendra Mohan, Amrik Singh y Dharamvir Singh Ahlawat. "A Critical Review on Mesoporous Photoanodes for Dye-Sensitized Solar Cells". Materials Science Forum 771 (octubre de 2013): 53–69. http://dx.doi.org/10.4028/www.scientific.net/msf.771.53.

Texto completo
Resumen
Until breakthrough in 1991, commercialization of dye-sensitized solar cell (DSSC) has been a gradual process leading to a scarce production. A thorough study of dilemmas is needed to overcome the shortcomings of DSSC to make it stand against traditional silicon based solar cells. A DSSC is composed of important components including photoanode, dye, electrolyte and counter electrode. Among these photoanode is the focussed area of the presented article. The photoanode is a thin porous film of metal oxide semiconductor supported on to a transparent conducting oxide (TCO) glass. Extensive research in this field has revealed the photophysics of semiconducting electrodes like TiO2, ZnO and SnO2etc. Selection of metal oxide for this purpose relies on crystallinity, particle size, and thickness of the film, surface area, dye affinity and porosity. These parameters related to the candidature of a particular metal oxide film as photoanode in DSSC have been discussed and optimized values have been quoted. The present study aims at emphasizing the history of DSSC as well as recent developments in electrodes, dyes and electrolytes in this specific area.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Xu, Yichen, Jie Liu, Yonghua Cui, Rui Yin, Xishu Wang, Shengyao Wu y Xibin Yu. "Efficient polycrystalline silicon solar cells with double metal oxide layers". Dalton Transactions 48, n.º 11 (2019): 3687–94. http://dx.doi.org/10.1039/c8dt04233k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Theuring, Martin, Martin Vehse, Ibrahim Noureddine, Karsten von Maydell y Carsten Agert. "Highly Transparent AZO/Ag/AZO Multilayer Front Contact for n-i-p Silicon Thin-Film Solar Cells". MRS Proceedings 1426 (2012): 93–98. http://dx.doi.org/10.1557/opl.2012.864.

Texto completo
Resumen
ABSTRACTOxide-metal-oxide structures are an alternative to single material transparent electrical contacts. Among other advantages, these multilayer systems provide good conductivity and transmittance, even when fabricated at room temperature. Low temperature processing is a requirement for silicon thin-film solar cells on various flexible substrates. The design and fabrication of oxide-metal-oxide structures based on ZnO:Al and Ag are investigated in this work. Further the integration of an optimized multilayer electrode into an amorphous silicon solar cell in substrate configuration was performed. Measurement results and possible loss mechanisms are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Hsu, Julia W. P. y Matthew T. Lloyd. "Organic/Inorganic Hybrids for Solar Energy Generation". MRS Bulletin 35, n.º 6 (junio de 2010): 422–28. http://dx.doi.org/10.1557/mrs2010.579.

Texto completo
Resumen
AbstractOrganic and hybrid (organic/inorganic) solar cells are an attractive alternative to traditional silicon-based photovoltaics due to low-temperature, solution-based processing and the potential for rapid, easily scalable manufacturing. Using oxide semiconductors, instead of fullerenes, as the electron acceptor and transporter in hybrid solar cells has the added advantages of better environmental stability, higher electron mobility, and the ability to engineer interfacial band offsets and hence the photovoltage. Further improvements to this structure can be made by using metal oxide nanostructures to increase heterojunction areas, similar to bulk heterojunction organic photovoltaics. However, compared to all-organic solar cells, these hybrid devices produce far lower photocurrent, making improvement of the photocurrent the highest priority. This points to a less than optimized polymer/metal oxide interface for carrier separation. In this article, we summarize recent work on examining the polymer structure, electron transfer, and recombination at the polythiophene-ZnO interface in hybrid solar cells. Additionally, the impact of chemical modification at the donor-acceptor interface on the device characteristics is reviewed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Rauch, Vivien, Jonas Conradt, Mayuko Takahashi, Masatoshi Kanesato, Jennifer A. Wytko, Yoshihiro Kikkawa, Heinz Kalt y Jean Weiss. "Self-organized porphyrin arrays on surfaces: the case of hydrophilic side chains and polar surfaces". Journal of Porphyrins and Phthalocyanines 18, n.º 01n02 (enero de 2014): 67–75. http://dx.doi.org/10.1142/s108842461350106x.

Texto completo
Resumen
Energy collection in photosynthetic microorganisms occurs through vectorial energy transfer along organized assemblies of chromophores. This process has inspired many research groups and yielded numerous examples of self-assembled photoactive structures. Dye sensitization of solar cells usually requires covalent anchoring of dyes onto the surface of metal oxides. A new porphyrin derivative that self-assembles upon non-covalent interaction with a surface has been designed and characterized by AFM. Interaction with metal oxide surfaces is further documented by the sensitization of metal oxide surfaces and the generation of photocurrent in non-optimized dye sensitized solar cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Ukoba, Kingsley O., Freddie L. Inambao y Andrew C. Eloka-Eboka. "Fabrication of Affordable and Sustainable Solar Cells Using NiO/TiO2 P-N Heterojunction". International Journal of Photoenergy 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/6062390.

Texto completo
Resumen
The need for affordable, clean, efficient, and sustainable solar cells informed this study. Metal oxide TiO2/NiO heterojunction solar cells were fabricated using the spray pyrolysis technique. The optoelectronic properties of the heterojunction were determined. The fabricated solar cells exhibit a short-circuit current of 16.8 mA, open-circuit voltage of 350 mV, fill factor of 0.39, and conversion efficiency of 2.30% under 100 mW/cm2 illumination. This study will help advance the course for the development of low-cost, environmentally friendly, and sustainable solar cell materials from metal oxides.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Neugebohrn, Nils, Kai Gehrke, Karoline Brucke, Maximilian Götz y Martin Vehse. "Multifunctional metal oxide electrodes: Colour for thin film solar cells". Thin Solid Films 685 (septiembre de 2019): 131–35. http://dx.doi.org/10.1016/j.tsf.2019.06.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hossain, Mohammad I., Nivedita Yumnam, Wayesh Qarony, Alberto Salleo, Veit Wagner, Dietmar Knipp y Yuen H. Tsang. "Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells". Solar Energy 198 (marzo de 2020): 570–77. http://dx.doi.org/10.1016/j.solener.2020.01.082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Johnson, Forrest, Sang Ho Song, Joel Abrahamson, Richard Liptak, Eray Aydil y Stephen A. Campbell. "Sputtered metal oxide broken gap junctions for tandem solar cells". Solar Energy Materials and Solar Cells 132 (enero de 2015): 515–22. http://dx.doi.org/10.1016/j.solmat.2014.09.042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Baeten, Linny, Bert Conings, Jan D’Haen, An Hardy, Jean V. Manca y Marlies K. Van Bael. "Fully water-processable metal oxide nanorods/polymer hybrid solar cells". Solar Energy Materials and Solar Cells 107 (diciembre de 2012): 230–35. http://dx.doi.org/10.1016/j.solmat.2012.06.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ryu, Seungchan, Jangwon Seo, Seong Sik Shin, Young Chan Kim, Nam Joong Jeon, Jun Hong Noh y Sang Il Seok. "Fabrication of metal-oxide-free CH3NH3PbI3perovskite solar cells processed at low temperature". Journal of Materials Chemistry A 3, n.º 7 (2015): 3271–75. http://dx.doi.org/10.1039/c5ta00011d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Topoglidis, Emmanuel. "Mesoporous Metal Oxide Films". Coatings 10, n.º 7 (13 de julio de 2020): 668. http://dx.doi.org/10.3390/coatings10070668.

Texto completo
Resumen
Great progress has been made in the preparation and application of mesoporous metal oxide films and materials during the last three decades. Numerous preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. This Special Issue of Coatings contains a series of ten research articles demonstrating emphatically that various metal oxide materials could be prepared using a number of different methods, and focuses on many areas where these mesoporous materials could be used, such as sensors, solar cells, supercapacitors, photoelectrodes, anti-corrosion agents and bioceramics. Our aim is to present important developments in this fast-moving field, from various groups around the world.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Cao, Weiran, Ying Zheng, Zhifeng Li, Edward Wrzesniewski, William T. Hammond y Jiangeng Xue. "Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode". Organic Electronics 13, n.º 11 (noviembre de 2012): 2221–28. http://dx.doi.org/10.1016/j.orgel.2012.05.047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Concina, Isabella y Alberto Vomiero. "Solar Cells: Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells (Small 15/2015)". Small 11, n.º 15 (abril de 2015): 1743. http://dx.doi.org/10.1002/smll.201570087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Lippmaa, Mikk, Seiji Kawasaki, Ryota Takahashi y Takahisa Yamamoto. "Nanopillar composite electrodes for solar-driven water splitting". MRS Bulletin 46, n.º 2 (febrero de 2021): 142–51. http://dx.doi.org/10.1557/s43577-021-00030-6.

Texto completo
Resumen
AbstractSpontaneous noble metal dopant segregation in an oxide lattice can lead to the formation of metallic clusters and extended acicular inclusions. In a thin-film process, the shape and orientation of such noble metal inclusions are governed by the crystal growth direction, giving rise to a composite material with lattice-matched metal nanopillars embedded vertically in an insulating or semiconducting oxide matrix. An interesting application of such composites is in photoelectrochemical cell electrodes, where the metallic nanopillars take on three distinct roles: forming a Schottky junction with the host matrix, providing a low-loss current path from bulk to surface, and creating an efficient electrocatalytic active site on the electrode surface. In particular, we discuss the application of vertically aligned metal–oxide nanopillar composites in photoelectrochemical water-splitting cells used for direct solar-powered hydrogen generation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Lu, Shunmian, Xing Guan, Xinchen Li, Wei E. I. Sha, Fengxian Xie, Hongchao Liu, Jiannong Wang, Fei Huang y Wallace C. H. Choy. "Organic Solar Cells: A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells (Adv. Energy Mater. 17/2015)". Advanced Energy Materials 5, n.º 17 (septiembre de 2015): n/a. http://dx.doi.org/10.1002/aenm.201570096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

McGehee, Michael D. "Nanostructured Organic–Inorganic Hybrid Solar Cells". MRS Bulletin 34, n.º 2 (febrero de 2009): 95–100. http://dx.doi.org/10.1557/mrs2009.27.

Texto completo
Resumen
AbstractWhen light is absorbed in organic semiconductors, bound electron–hole pairs known as excitons are generated. The electrons and holes separate from each other at an interface between two semiconductors by electron transfer. It is advantageous to form well-ordered nanostructures so that all of the excitons can reach the interface between the two semiconductors and all of the charge carriers have a pathway to the appropriate electrode. This article discusses charge and exciton transport in organic semiconductors, as well as the opportunities for making highly efficient solar cells and for using carbon nanotubes to replace metal oxide electrodes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Addo, Ernest A., S. Ismat Shah, Robert Opila, Allen M. Barnett, Kevin Allison y Oleg Sulima. "Doped Self-Aligned Metallization for Solar Cells". Journal of Materials Research 19, n.º 4 (abril de 2004): 986–95. http://dx.doi.org/10.1557/jmr.2004.0129.

Texto completo
Resumen
Metal contacts using doped self-aligning metallization to [100] and [111] p-type silicon were investigated. Contacts formed in this manner allow the formation of a pn-junction and provide front metallization for photovoltaic applications. Formulated screen-printable thick films were annealed above Ag/Si eutectic temperature of 830 °C. The annealing process resulted in a junction depth of 0.3–1.1 μm with improved Ag/Si metal contacts due to the reduction of parasitic native oxide layer via the use of a wetting agent. The technique inhibits shunts (high conductivity paths through the solar cell pn-junction caused by excessive metal penetration) due to limited solubility of Ag in Si. The technique also reduces series resistance (a parasitic resistance due to surface states that also limit solar cell performance) due to a robust thermal processing window. The use of magnesium (Mg) as a wetting agent in the thick film Ag matrix was explored. We observed a correlation between increased wetting and improved dark saturation current J02 in the absence of a pre-existing junction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lu, Shunmian, Xing Guan, Xinchen Li, Wei E. I. Sha, Fengxian Xie, Hongchao Liu, Jiannong Wang, Fei Huang y Wallace C. H. Choy. "A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells". Advanced Energy Materials 5, n.º 17 (25 de junio de 2015): 1500631. http://dx.doi.org/10.1002/aenm.201500631.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Feng, Hao-Lin, Wu-Qiang Wu, Hua-Shang Rao, Long-Bin Li, Dai-Bin Kuang y Cheng-Yong Su. "Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells". Journal of Materials Chemistry A 3, n.º 28 (2015): 14826–32. http://dx.doi.org/10.1039/c5ta02269j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Valadi, Kobra, Saideh Gharibi, Reza Taheri-Ledari, Seckin Akin, Ali Maleki y Ahmed Esmail Shalan. "Metal oxide electron transport materials for perovskite solar cells: a review". Environmental Chemistry Letters 19, n.º 3 (13 de enero de 2021): 2185–207. http://dx.doi.org/10.1007/s10311-020-01171-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Larina, L. L., O. V. Alexeeva, O. V. Almjasheva, V. V. Gusarov, S. S. Kozlov, A. B. Nikolskaia, M. F. Vildanova y O. I. Shevaleevskiy. "Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells". Nanosystems: Physics, Chemistry, Mathematics 10, n.º 1 (27 de febrero de 2019): 70–75. http://dx.doi.org/10.17586/2220-8054-2019-10-1-70-75.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Zhou, Yinhua, Hyeunseok Cheun, Seungkeun Choi, William J. Potscavage, Canek Fuentes-Hernandez y Bernard Kippelen. "Indium tin oxide-free and metal-free semitransparent organic solar cells". Applied Physics Letters 97, n.º 15 (11 de octubre de 2010): 153304. http://dx.doi.org/10.1063/1.3499299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Peir?, Ana M., Punniamoorthy Ravirajan, Kuveshni Govender, David S. Boyle, Paul O'Brien, Donal D. C. Bradley, Jenny Nelson y James R. Durrant. "Hybrid polymer/metal oxide solar cells based on ZnO columnar structures". Journal of Materials Chemistry 16, n.º 21 (2006): 2088. http://dx.doi.org/10.1039/b602084d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Atienzar, Pedro, Thilini Ishwara, Masaki Horie, James R. Durrant y Jenny Nelson. "Hybrid polymer–metal oxide solar cells by in situ chemical polymerization". Journal of Materials Chemistry 19, n.º 30 (2009): 5377. http://dx.doi.org/10.1039/b902271f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Qi, Juanjuan, Junwei Chen, Weili Meng, Xiaoyan Wu, Changwen Liu, Wenjin Yue y Mingtai Wang. "Recent advances in hybrid solar cells based on metal oxide nanostructures". Synthetic Metals 222 (diciembre de 2016): 42–65. http://dx.doi.org/10.1016/j.synthmet.2016.04.027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Zhao, Zhouying, Ranganath Teki, Nikhil Koratkar, Harry Efstathiadis y Pradeep Haldar. "Metal oxide buffer layer for improving performance of polymer solar cells". Applied Surface Science 256, n.º 20 (agosto de 2010): 6053–56. http://dx.doi.org/10.1016/j.apsusc.2010.03.118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Englman, Tzofia, Eyal Terkieltaub y Lioz Etgar. "High Open Circuit Voltage in Sb2S3/Metal Oxide-Based Solar Cells". Journal of Physical Chemistry C 119, n.º 23 (2 de junio de 2015): 12904–9. http://dx.doi.org/10.1021/acs.jpcc.5b04231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Concina, Isabella y Alberto Vomiero. "Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells". Small 11, n.º 15 (18 de diciembre de 2014): 1744–74. http://dx.doi.org/10.1002/smll.201402334.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Wu, Huaisheng, Xuewei Zhao, Yizeng Wu, Qinghuan Ji, Linxiu Dai, Yuanyuan Shang y Anyuan Cao. "Improving CNT-Si solar cells by metal chloride-to-oxide transformation". Nano Research 13, n.º 2 (febrero de 2020): 543–50. http://dx.doi.org/10.1007/s12274-020-2648-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

THOMAS, Ankit Stephen. "METAL OXIDE ELECTRON TRANSPORT MATERIALS IN PEROVSKITE SOLAR CELLS: A REVIEW". European Journal of Materials Science and Engineering 7, n.º 4 (20 de diciembre de 2022): 225–60. http://dx.doi.org/10.36868/ejmse.2022.07.04.225.

Texto completo
Resumen
The domain of third-generation photovoltaics, mainly perovskite solar cells (PSCs), has been a topic of intensive research due to its varied and renowned efficiency values. However, the concern of stability and long-term operational abilities is a subject that needs to be looked into very differently. Thus, Metal Oxide Electron Transport Materials (MO ETMs) evolved. This review explains the employment of MO ETMs in various PSC architectures, the different deposition methods, requirements of an ideal MO ETM, the common materials that have been used previously, strategies to improve MO ETM-based device performance and lastly, techniques to find and synthesize an appropriate MO ETM. The entire review depicts how one can find alternative approaches to the traditional methods/materials used in a PSC. Moreover, it also highlights the various barriers to commercialization and how one can overcome them using varied approaches like molecular engineering, bilayer techniques and so on, to produce efficient and stable devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hossain, Mohammad I., Adnan Mohammad, Wayesh Qarony, Saidjafarzoda Ilhom, Deepa R. Shukla, Dietmar Knipp, Necmi Biyikli y Yuen Hong Tsang. "Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells". RSC Advances 10, n.º 25 (2020): 14856–66. http://dx.doi.org/10.1039/d0ra00939c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Hong, Wesley T., Marcel Risch, Kelsey A. Stoerzinger, Alexis Grimaud, Jin Suntivich y Yang Shao-Horn. "Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis". Energy & Environmental Science 8, n.º 5 (2015): 1404–27. http://dx.doi.org/10.1039/c4ee03869j.

Texto completo
Resumen
The rational design of non-precious transition metal perovskite oxide catalysts holds exceptional promise for understanding and mastering the kinetics of oxygen electrocatalysis instrumental to artificial photosynthesis, solar fuels, fuel cells, electrolyzers, and metal–air batteries.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía