Literatura académica sobre el tema "Metabolomics and trascriptomics analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Metabolomics and trascriptomics analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Metabolomics and trascriptomics analysis"
Worley, Bradley y Robert Powers. "Multivariate Analysis in Metabolomics". Current Metabolomics 1, n.º 1 (1 de noviembre de 2012): 92–107. http://dx.doi.org/10.2174/2213235x11301010092.
Texto completoWorley, Bradley y Robert Powers. "Multivariate Analysis in Metabolomics". Current Metabolomics 1, n.º 1 (1 de noviembre de 2012): 92–107. http://dx.doi.org/10.2174/2213235x130108.
Texto completoChen, Yang, En-Min Li y Li-Yan Xu. "Guide to Metabolomics Analysis: A Bioinformatics Workflow". Metabolites 12, n.º 4 (15 de abril de 2022): 357. http://dx.doi.org/10.3390/metabo12040357.
Texto completoIKEDA, Kazutaka y Takeshi BAMBA. "Hydrophobic Metabolite Analysis in Metabolomics". Journal of the Mass Spectrometry Society of Japan 65, n.º 5 (2017): 199–202. http://dx.doi.org/10.5702/massspec.s17-48.
Texto completoJansen, J. J., H. C. J. Hoefsloot, H. F. M. Boelens, J. van der Greef y A. K. Smilde. "Analysis of longitudinal metabolomics data". Bioinformatics 20, n.º 15 (15 de abril de 2004): 2438–46. http://dx.doi.org/10.1093/bioinformatics/bth268.
Texto completoJansen, Jeroen J. y Johan A. Westerhuis. "Editorial–data analysis in metabolomics". Metabolomics 8, S1 (24 de marzo de 2012): 1–2. http://dx.doi.org/10.1007/s11306-012-0418-4.
Texto completoSaglik, Ayhan, Ismail Koyuncu, Ataman Gonel, Hamza Yalcin, Fatih Mehmet Adibelli y Muslum Toptan. "Metabolomics analysis in pterygium tissue". International Ophthalmology 39, n.º 10 (8 de enero de 2019): 2325–33. http://dx.doi.org/10.1007/s10792-018-01069-2.
Texto completoBarnes, S., H. P. Benton, K. Casazza, S. J. Cooper, X. Cui, X. Du, J. Engler et al. "Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future". Journal of Mass Spectrometry 51, n.º 8 (agosto de 2016): ii—iii. http://dx.doi.org/10.1002/jms.3676.
Texto completoBarnes, Stephen, H. Paul Benton, Krista Casazza, Sara J. Cooper, Xiangqin Cui, Xiuxia Du, Jeffrey Engler et al. "Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future". Journal of Mass Spectrometry 51, n.º 8 (15 de julio de 2016): 535–48. http://dx.doi.org/10.1002/jms.3780.
Texto completoMoseley, Hunter N. B. "ERROR ANALYSIS AND PROPAGATION IN METABOLOMICS DATA ANALYSIS". Computational and Structural Biotechnology Journal 4, n.º 5 (enero de 2013): e201301006. http://dx.doi.org/10.5936/csbj.201301006.
Texto completoTesis sobre el tema "Metabolomics and trascriptomics analysis"
GUARNERIO, Chiara Francesca. "Effects of enod40 overexpression in non legume plants". Doctoral thesis, Università degli Studi di Verona, 2010. http://hdl.handle.net/11562/343215.
Texto completoENOD40 is an Early Nodulin gene that it is know to play a key role in nodule formation in response to interaction of legume plants with symbiotic Rhizobium bacteria. Homologues of ENOD40 genes have been identified in several plant species and its expression is observed during the initiation and development of new organs, such as nodules, lateral roots, young leaves and stipule primordia. ENOD40 gene has an unusual structure: it lacks a long open reading frame, but several short ORFs are present. Moreover, at nucleotide level, two regions, named box1 and box2, are highly conserved among all ENOD40 genes. In box 1 region, a highly conserved ORF (ORF 1) is present and it seems to encode a putative peptide of 10-13 amino acids. Furthermore, the gene contains regions corresponding to conserved secondary structures of the transcript. Six domains were identified in ENOD40 mRNA and two of these domains are strongly conserved among legume and non legume species. Despite several researches, the roles of the ENOD40 gene has not been so far completely elucidated. Moreover, whether the biological activity should be ascribed to RNA or peptide, or both, is still unclear. For this reason, the two main goals of the research are: to investigate the possible presence of the putative peptide encoded by box1 of the ENOD40 gene in BY-2 cells and to investigate the role of ENOD40 gene in non legume plants, using Arabidopsis thaliana. That ENOD40 could act, at least in part, through the peptide encode by box1 is suggested by several observations, but no one have revealed biochemically the putative peptide. In the first part of the work a purification procedure consisting of membrane cut-off, ion exchange chromatography, solid exchange extraction, HPLC-DAD and mass spectrometry (LC-ESI-MS and MALDI-TOF) was set up to search for the putative peptide in BY-2 cells overexpressing NtENOD40 gene. Unfortunately, despite several attempts to set up the purification procedure and the different and sensitive techniques used for the analysis of the putatively peptide-enriched fractions, only MALDI-TOF PSD analysis gave an initial clue of the possible presence of the peptide in ENOD40 overexpressing BY2 cells. In the second part of the work, the possible role of the gene has been investigated through the metabolomics and transcriptomics characterization of ENOD40 overexpressing Arabidopsis plants. Metabolite and transcriptional profiles of the three Arabidopsis lines overexpressing soybean ENOD40 gene were acquired and compared to those obtained from wild type plants. Afterward, biomarker analysis of metabolomic and transcriptomic dataset was used in order to identify the metabolites and transcripts that showed the higher correlation with the overexpression of ENOD40 gene. In the metabolite profiles, glucosinolate metabolites characterized all the three transformed lines compared with the wild type, while flavonoids mainly characterized wild type plants. With regard to transcriptional profiling, most of the genes upregulated in the three transformed lines (twelve out of twenty-three), were correlated with processes occurring in the cell wall. Thus, the cell wall is the mechanical determinant of cell shape and size ENOD40 gene could be involved in a process that controls the composition and the dynamics of the cell wall. In conclusion, previous morphological studies on the same Arabidopsis thaliana ENOD40 transformed lines used in this work have been showed that these plants are characterised by normal organs containing smaller cells, and on ENOD40 transfected Arabidopsis protoplasts are characterized by reduced expansion, suggested that the gene could have some role in keeping the cells in a “young” state . The observation that ENOD40 transformed Arabidopsis lines accumulate high levels of glucosinolates, that are typical of the young tissues, suggests that, also from the metabolic point of view, the transformed cells have features typical of younger cells, whereas wild type cells use their metabolic resources to accumulate flavonoids, another class of secondary metabolites more typical of differentiated state. With regard to transcriptomic analysis, since transformed plants are morphologically characterized by small cell size, the genes upregulated in the transformed lines, involved in cell wall dynamics and composition, could be involved in the prevention of cell expansion. The role of ENOD40 in maintenance of cells in a “young state” is also supported by the expression patterns of ENOD40 genes reported in literature.
Yet, Idil. "Integrated epigenomics and metabolomics analysis in twins". Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/integrated-epigenomics-and-metabolomics-analysis-in-twins(4d0fb76b-cc2b-4e31-8950-a7ffb5b91363).html.
Texto completoMuhamad, Ali Howbeer. "Metabolomics investigation of microbial cell factories". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/metabolomics-investigation-of-microbial-cell-factories(2e2f5f58-d38a-4c77-966b-56ce92aec619).html.
Texto completoKlünder, Christina. "Metabolomics for toxicity analysis using the chlorophyte Scenedesmus vacuolatus /". Leipzig [u.a.], 2009. http://www.ufz.de/data/ufzdiss_2_2009_9947.pdf.
Texto completoGloaguen, Yoann. "Supporting analysis, visualisation and biological interpretation of metabolomics datasets". Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8433/.
Texto completoAbdelrazig, Salah M. A. "Mass spectrometry for high-throughput metabolomics analysis of urine". Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30600/.
Texto completoBeisken, Stephan Andreas. "Informatics for tandem mass spectrometry-based metabolomics". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708325.
Texto completoDuffy, Kate I. "Application of metabolomics to the analysis of ancient organic residues". Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5670/.
Texto completoDaub, Carsten O. "Analysis of integrated transcriptomics and metabolomics data a systems biology approach /". [S.l. : s.n.], 2004. http://pub.ub.uni-potsdam.de/2004/0025/daub.pdf.
Texto completoDaub, Carsten Oliver. "Analysis of integrated transcriptomics and metabolomics data : a systems biology approach". Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/138/.
Texto completoWir verwenden das informationstheoretische Konzept der wechselseitigen Information, das ursprünglich für diskrete Daten definiert ist, als Ähnlichkeitsmaß und schlagen eine Erweiterung eines für gewöhnlich für die Anwendung auf kontinuierliche biologische Daten verwendeten Algorithmus vor. Wir vergleichen unseren Ansatz mit bereits existierenden Algorithmen. Wir entwickeln ein geschwindigkeitsoptimiertes Computerprogramm für die Anwendung der wechselseitigen Information auf große Datensätze. Weiterhin konstruieren und implementieren wir einen web-basierten Dienst fuer die Analyse von integrierten Daten, die durch unterschiedliche Messmethoden gemessen wurden. Die Anwendung auf biologische Daten zeigt biologisch relevante Gruppierungen, und rekonstruierte Signalnetzwerke zeigen Übereinstimmungen mit physiologischen Erkenntnissen.
Recent high-throughput technologies enable the acquisition of a variety of complementary data and imply regulatory networks on the systems biology level. A common approach to the reconstruction of such networks is the cluster analysis which is based on a similarity measure.
We use the information theoretic concept of the mutual information, that has been originally defined for discrete data, as a measure of similarity and propose an extension to a commonly applied algorithm for its calculation from continuous biological data. We compare our approach to previously existing algorithms. We develop a performance optimised software package for the application of the mutual information to large-scale datasets. Furthermore, we design and implement a web-based service for the analysis of integrated data measured with different technologies. Application to biological data reveals biologically relevant groupings and reconstructed signalling networks show agreements with physiological findings.
Libros sobre el tema "Metabolomics and trascriptomics analysis"
K, Saito, Dixon Richard A. 1951- y Willmitzer Lothar, eds. Plant metabolomics. Berlin: Springer, 2006.
Buscar texto completoXia, Yinglin, Jun Sun y Xiaotao Shen, Ph.D., Stanford University School of Medicine. Statistical Data Analysis of Microbiomes and Metabolomics. Washington, DC, USA: American Chemical Society, 2022. http://dx.doi.org/10.1021/acsinfocus.7e5035.
Texto completoLi, Shuzhao, ed. Computational Methods and Data Analysis for Metabolomics. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0239-3.
Texto completoWolfram, Weckwerth, ed. Metabolomics: Methods and protocols. Totowa, N.J: Humana Press, 2007.
Buscar texto completoDatta, Susmita y Bart J. A. Mertens, eds. Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45809-0.
Texto completoRoessner, Ute y Daniel Anthony Dias. Metabolomics tools for natural product discovery: Methods and protocols. New York: Humana Press, 2013.
Buscar texto completoBagchi, Debasis. Genomics, proteomics, and metabolomics in nutraceuticals and functional foods. Ames, Iowa: Wiley-Blackwell, 2010.
Buscar texto completoBagchi, Debasis, Anand Swaroop y Manashi Bagchi. Genomics, proteomics and metabolomics in nutraceuticals and functional foods. Chichester, West Sussex: John Wiley & Sons, Inc., 2015.
Buscar texto completoArmitage, Emily G. Correlation-based network analysis of cancer metabolism: A new systems biology approach in metabolomics. New York: Springer, 2014.
Buscar texto completoDebasis, Bagchi, Lau Francis y Bagchi Manashi, eds. Genomics, proteomics, and metabolomics in nutraceuticals and functional foods. Ames, Iowa: Wiley-Blackwell, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Metabolomics and trascriptomics analysis"
Scholz, Matthias y Joachim Selbig. "Visualization and Analysis of Molecular Data". En Metabolomics, 87–104. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-244-1_6.
Texto completoSchuster, Stefan, Axel Kamp y Mikhail Pachkov. "Understanding the Roadmap of Metabolism by Pathway Analysis". En Metabolomics, 199–226. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-244-1_12.
Texto completoSteuer, Ralf, Katja Morgenthal, Wolfram Weckwerth y Joachim Selbig. "A Gentle Guide to the Analysis of Metabolomic Data". En Metabolomics, 105–26. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-244-1_7.
Texto completoTolstikov, Vladimir V., Oliver Fiehn y Nobuo Tanaka. "Application of Liquid Chromatography-Mass Spectrometry Analysis in Metabolomics". En Metabolomics, 141–55. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-244-1_9.
Texto completoLin, Shili, Denise Scholtens y Sujay Datta. "Metabolomics Data Analysis". En Bioinformatics Methods, 211–32. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781315153728-10.
Texto completoWu, Jun-Fang y Yulan Wang. "Multivariate Analysis of Metabolomics Data". En Plant Metabolomics, 105–22. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9291-2_5.
Texto completoWittmann, Christoph y Jean-Charles Portais. "Metabolic Flux Analysis". En Metabolomics in Practice, 285–312. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655861.ch12.
Texto completoLubbe, Andrea, Kashif Ali, Robert Verpoorte y Young Hae Choi. "NMR-Based Metabolomics Analysis". En Metabolomics in Practice, 209–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655861.ch9.
Texto completoViolante, Sara, Mirela Berisa, Tiffany H. Thomas y Justin R. Cross. "Stable Isotope Tracers for Metabolic Pathway Analysis". En High-Throughput Metabolomics, 269–83. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_17.
Texto completoMarkley, John L., Hesam Dashti, Jonathan R. Wedell, William M. Westler y Hamid R. Eghbalnia. "Tools for Enhanced NMR-Based Metabolomics Analysis". En NMR-Based Metabolomics, 413–27. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9690-2_23.
Texto completoActas de conferencias sobre el tema "Metabolomics and trascriptomics analysis"
Porokhin, Vladimir, Xinmeng Li y Soha Hassoun. "Pathway Enrichment Analysis for Untargeted Metabolomics". En BCB '17: 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3107411.3108233.
Texto completoHu, Ting, Weidong Zhang, Zhaozhi Fan, Guang Sun, Sergei Likhodi, Edward Randell y Guangju Zhai. "METABOLOMICS DIFFERENTIAL CORRELATION NETWORK ANALYSIS OF OSTEOARTHRITIS". En Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814749411_0012.
Texto completoUllah, Ehsan, Raghvendra Mall, Reda Rawi y Halima Bensmail. "Statistical and Network Analysis of Metabolomics Data". En BCB '16: ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2975167.2985683.
Texto completoLivengood, Philip, Ross Maciejewski, Wei Chen y David S. Ebert. "A visual analysis system for metabolomics data". En 2011 IEEE Symposium on Biological Data Visualization (BioVis). IEEE, 2011. http://dx.doi.org/10.1109/biovis.2011.6094050.
Texto completoCardoso, Sara, Miguel Rocha, Telma Afonso y Marcelo Maraschin. "WebSpecmine: a website for metabolomics data analysis and mining." En 3rd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/iecm-3-05842.
Texto completoLaatikainen, Reino, Pekka Laatikainen y Elias Hakalehto. "QUANTITATIVE QUANTUM MECHANICAL NMR ANALYSIS: THE SUPERIOR TOOL FOR ANALYSIS OF BIOFLUIDS". En The 1st International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/iecm-1-c005.
Texto completoYuan, P. "Lipid Metabolomics Analysis of Pulmonary Veno-Occlusive Disease". En American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a1189.
Texto completoGonzález-Domínguez, Raúl, Ana Sayago y Ángeles Fernández-Recamales. "Comparison of complementary statistical analysis approaches in metabolomic food traceability". En 3rd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/iecm-3-05839.
Texto completoTheodoridis, Georgios, Olga Begou, Olga Deda, Helen Gika, Ioannis Taitzoglou, Nikolaos Raikos y Agapios Agapiou. "URINE AND FECES METABOLOMICS-BASED ANALYSIS OF CAROB TREATED RATS". En The 2nd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/iecm-2-04992.
Texto completoLaatikainen, Reino, Pekka Laatikainen y Hannu Maaheimo. "Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of Spectra of 1000+1 Chemical Shifts and Other Biological Systems". En 3rd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/iecm-3-05844.
Texto completoInformes sobre el tema "Metabolomics and trascriptomics analysis"
Aharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer y Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, julio de 2013. http://dx.doi.org/10.32747/2013.7593400.bard.
Texto completoRabinowitz, Joshua D. Final Technical Report--Quantitative analysis of metabolic regulation by integration of metabolomics, proteomics, and fluxomics. Office of Scientific and Technical Information (OSTI), diciembre de 2018. http://dx.doi.org/10.2172/1487155.
Texto completoLidstrom, Mary E., Ludmila Chistoserdova, Marina G. Kalyuzhnaya, Victoria J. Orphan y David A. Beck. Systems level insights into alternate methane cycling modes in a freshwater lake via community transcriptomics, metabolomics and nano-SIMS analysis. Office of Scientific and Technical Information (OSTI), agosto de 2014. http://dx.doi.org/10.2172/1149958.
Texto completo