Literatura académica sobre el tema "Metaboliti volatili"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Metaboliti volatili".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Metaboliti volatili"
Xu, Yaying, Changqing Zhu, Changjie Xu, Jun Sun, Donald Grierson, Bo Zhang y Kunsong Chen. "Integration of Metabolite Profiling and Transcriptome Analysis Reveals Genes Related to Volatile Terpenoid Metabolism in Finger Citron (C. medica var. sarcodactylis)". Molecules 24, n.º 14 (15 de julio de 2019): 2564. http://dx.doi.org/10.3390/molecules24142564.
Texto completoLu, Xinxin, Lei Zhang, Wenyue Huang, Shujiang Zhang, Shifan Zhang, Fei Li, Hui Zhang, Rifei Sun, Jianjun Zhao y Guoliang Li. "Integrated Volatile Metabolomics and Transcriptomics Analyses Reveal the Influence of Infection TuMV to Volatile Organic Compounds in Brassica rapa". Horticulturae 8, n.º 1 (8 de enero de 2022): 57. http://dx.doi.org/10.3390/horticulturae8010057.
Texto completoZheng, Yucheng, Pengjie Wang, Xuejin Chen, Yun Sun, Chuan Yue y Naixing Ye. "Transcriptome and Metabolite Profiling Reveal Novel Insights into Volatile Heterosis in the Tea Plant (Camellia Sinensis)". Molecules 24, n.º 18 (17 de septiembre de 2019): 3380. http://dx.doi.org/10.3390/molecules24183380.
Texto completoXiang, Nan, Hui Xie, Liuwei Qin, Min Wang, Xinbo Guo y Wen Zhang. "Effect of Climate on Volatile Metabolism in ‘Red Globe’ Grapes (Vitis vinifera L.) during Fruit Development". Foods 11, n.º 10 (16 de mayo de 2022): 1435. http://dx.doi.org/10.3390/foods11101435.
Texto completoXiang, Nan, Yihan Zhao, Bing Zhang, Qiuming Gu, Weiling Chen y Xinbo Guo. "Volatiles Accumulation during Young Pomelo (Citrus maxima (Burm.) Merr.) Fruits Development". International Journal of Molecular Sciences 23, n.º 10 (18 de mayo de 2022): 5665. http://dx.doi.org/10.3390/ijms23105665.
Texto completoWhiting, M. D., G. Paliyath y D. P. Murr. "Analysis of Volatile Evolution from Scald-developing and Nondeveloping Sides of Apple Fruits". HortScience 32, n.º 3 (junio de 1997): 457C—457. http://dx.doi.org/10.21273/hortsci.32.3.457c.
Texto completoFitria, Rizki, Djarot Sasongko Hami Seno, Bambang Pontjo Priosoeryanto, Najmah Najmah y Waras Nurcholis. "Cytotoxic Activity of Volatile Compounds in Cymbopogon nardus’ Essential Oils". Justek : Jurnal Sains dan Teknologi 5, n.º 2 (2 de noviembre de 2022): 90. http://dx.doi.org/10.31764/justek.v5i2.10194.
Texto completoKharasch, Evan D., Jesara L. Schroeder, H. Denny Liggitt, Sang B. Park, Dale Whittington y Pamela Sheffels. "New Insights into the Mechanism of Methoxyflurane Nephrotoxicity and Implications for Anesthetic Development (Part 1)". Anesthesiology 105, n.º 4 (1 de octubre de 2006): 726–36. http://dx.doi.org/10.1097/00000542-200610000-00019.
Texto completoCozzolino, Rosaria, Matteo Stocchero, Rosa Perestrelo y José S. Câmara. "Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality". Foods 11, n.º 3 (27 de enero de 2022): 366. http://dx.doi.org/10.3390/foods11030366.
Texto completoKiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada y S. Kanazawa. "Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts". Soil and Water Research 7, No. 3 (10 de julio de 2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.
Texto completoTesis sobre el tema "Metaboliti volatili"
Andreola, Diego <1991>. "Elaborazione di un metodo di analisi per la determinazione di metaboliti volatili che consentono l'individuazione in fase precoce della presenza di muffe in ambienti chiusi mediante GC-MS e desorbimento termico". Master's Degree Thesis, Università Ca' Foscari Venezia, 2018. http://hdl.handle.net/10579/12137.
Texto completoHess, Joerg. "Modelling the transport of volatile metabolites in the mouth". Thesis, University of the West of England, Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490457.
Texto completoEl-Kader, M. S. A. M. A. "Production of Volatile Secondry Metabolites in Plant Tissue Cultures". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503643.
Texto completoTuron, Violette. "Coupling dark fermentation with microalgal heterotrophy : influence of fermentation metabolites mixtures, light, temperature and fermentation bacteria on microalgae growth". Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS201/document.
Texto completoGrowing microalgae in heterotrophic mode present several advantages over autotrophic mode such as a higher productivity in terms of biomass and lipids for biofuels production. Nevertheless, this process is limited by the production cost associated with the organic substrate (i.e. glucose) and fermenters sterilization costs. Dark fermentation effluents, mainly composed of acetate and butyrate, could be used as a low-cost medium to grow microalgae heterotrophically or mixotrophically. The aims of this PhD were i) to optimize microalgae growth on various mixtures of fermentations metabolites using the presence or absence light and different cultivation temperatures and ii) to assess the feasibility of using unsterilized fermentation effluents. First, a model based on mass balance was built to characterize heterotrophic growth rates and yields when Chlorella sorokiniana and Auxenochlorella protothecoides were supplemented with different mixtures of acetate and butyrate. Results showed that the acetate:butyrate ratio and the butyrate concentration per se were two key parameters for promoting heterotrophic growth. Then, further studies showed that the presence of light and the use of suboptimal temperature (30 °C) could reduce the butyrate inhibition on growth by either triggering autotrophic production of biomass or enhancing growth on acetate. Finally, it was shown that microalgae could outcompete fermentation bacteria for acetate when growing on raw dark fermentation effluents, thanks to a fast algal growth on acetate (1.75 d-1) and a drastic change of culture conditions to the detrimental of bacterial growth
Cheung, William Hon Kit. "Metabolic profiling of volatile organic compounds and enhanced vibrational spectroscopy". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/metabolic-profiling-of-volatile-organic-compounds-and-enhanced-vibrational-spectroscopy(adcff7c7-96e3-4b5a-8d77-4a943b75f211).html.
Texto completoBerrou, Kevin. "Développement d’outils innovants pour l'étude de l’infection chronique". Thesis, Nîmes, 2019. http://www.theses.fr/2019NIME0001.
Texto completoOne of the major challenges in the management of diabetic foot wounds is to obtain information to anticipate the evolution of these infections. Currently, there are no sufficiently effective tools to distinguish a colonized wound to an infected wound. The proposed approach is based on the discrimination of several bacteria frequently found in chronic diabetic foot wounds from their metabolic profile, and more specifically the volatile metabolites they produce. Indeed, the dynamism of bacterial metabolism would be able to highlight the changes that are occurring in the wound. First, a new methodology for the concentration of volatile metabolites by Stir Bar Sorptive Extraction (SBSE) was developed. It is based on the use of stir bars that are placed both in the culture medium and in headspace, followed by GC-MS analysis. The method was then compared with another concentration method using the fibres (SPME) and we highlighted a better concentration capacity with a more sensitive detection. This methodology was then used to monitor the metabolic production of six bacterial strains grown under conditions mimicking the chronic wound. Their metabolic profile allowed us to distinguish bacterial species. Moreover, more surprisingly, it was possible to distinguish two strains of Staphylococcus aureus with different virulence profiles. Finally, a co-culture was performed and we showed that 83% of the metabolites produced in simple culture were found, proving the interest of the methodology to distinguish bacterial strains of the same species within a wound
Sohrabi, Mohsen. "Oral Microbiota and their Volatile Metabolites in Oral Squamous Cell Carcinoma". Thesis, Griffith University, 2016. http://hdl.handle.net/10072/366691.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Moalemiyan, Mitra. "Volatile metabolic profiling to detect and discriminate diseases of mango fruit". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97971.
Texto completoRobert-Hazotte, Aline. "Impact du métabolisme des molécules odorantes sur la perception olfactive chez l'Homme". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK073.
Texto completoThe sense of smell permits the perception of volatile substances commonly known as odors. This sense plays an important role in the feeding and wellness of individuals because it involves exchanges with their environment (search for food or partners, predators detection…). The efficiency of the olfactory system mainly relies on its sensitivity depending on the odorant affinity for their olfactory receptors but also on an enzymatic clearance mechanism of odorants which involves the Odorant metabolizing Enzymes (OME) to avoid the saturation of the receptors. Recent studies have shown that the biotransformation of odorants by EMO, in the olfactory epithelium, participates in the olfactory perception. Indeed, OME catalyse the deactivation of the odorants and their subsequent elimination which led to the termination of the olfactory signal. In this context, this work aims to provide a better understanding of the enzymatic mechanisms of the OME in mammal olfactory perception and to study more specifically these mechanisms in human.The first axis of this work, based on physicochemical analysis, has consisted to develop an innovative proton transfer reaction mass spectrometry technique (PTR-MS) to allow the analysis in real time of the odorants biotransformation by OME. This technique was first applied ex vivo using rats and rabbits olfactory epithelium and olfactory mucus but also in vivo directly inside the human nasal cavity. Thus, we have demonstrated that the olfactory biotransformation of odorants catalyzed by different enzymes like glutathione transferases, carboxylesterases and dicarbonyl xylulose reductases (DCXR), is a very fast mechanism (few milliseconds). This very high velocity is perfectly consistent with the physiological dynamics of the olfactory process. Moreover, PTR-MS analyzes revealed that the odorants biotransformation could produce volatile metabolites with odorous properties which could participate in the global olfactory perception by interacting also with olfactory receptors. These various metabolites have been formally identified by a gas chromatography-mass spectrometry technique (GC-MS).The second axis, based on psychophysical method, evaluated the impact of the odorant metabolism in the human olfactory perception. For this purpose, an original approach recently developed in the lab, consisting of the modulation of the olfactory perception through a competition between odorants metabolized by the same EMO was transposed from the rabbit model to the human. The metabolic competition between several diketones toward DCXR was first demonstrated by biochemical analysis using the corresponding human recombinant enzyme. Then, an olfactometric study carried out on a 40 subjects panel demonstrated that this competition mechanism between odorants induces modulations of the biotransformation of these molecules and thus leads to modifications of their relative bioavailability and in fine of their perception. These new and significant results demonstrate that modulations impacting odorants metabolism leads immediately to changes in their olfactory perception. This thesis highlights on the function of EMO in mammals and reveals for the first time in human a significant role of the odorant metabolism in olfactory perception
Bahroun, Najat. "Detection of Salmonella in food samples using exogenous volatile organic compound metabolites". Thesis, Northumbria University, 2017. http://nrl.northumbria.ac.uk/32550/.
Texto completoLibros sobre el tema "Metaboliti volatili"
Sayyed, R. Z. y Virgilio Gavicho Uarrota, eds. Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07559-9.
Texto completoSmith, Neil A. Metabolism of dimethyl disulphide, carbon disulphide and other volatile sulphur compounds by chemolithoautotrophic sulphur bacteria. [s.l.]: typescript, 1988.
Buscar texto completoH, Cummings John, Rombeau John L y Sakata Takashi, eds. Physiological and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press, 1995.
Buscar texto completoKrupke, Oliver A. The significance of volatile antifungal metabolites produced by trichomerma harzianum biotype Th4, in green-mould disease of commercial mushroom crops. St. Catharines, Ont: Brock University, Dept. of Biological Sciences, 2001.
Buscar texto completoVolatiles and Metabolites of Microbes. Elsevier, 2021. http://dx.doi.org/10.1016/c2020-0-00302-6.
Texto completoVolatiles and Metabolites of Microbes. Elsevier Science & Technology, 2021.
Buscar texto completoSingh, Joginder, Ajay Kumar y Jastin Samuel. Volatiles and Metabolites of Microbes. Elsevier Science & Technology Books, 2021.
Buscar texto completoSecondary Metabolites and Volatiles of PGPRs in Plant-Growth Promotion. Springer International Publishing AG, 2022.
Buscar texto completoTraul, David E. y Rachel Diehl. Supratentorial Tumors. Editado por David E. Traul y Irene P. Osborn. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190850036.003.0001.
Texto completoVairappan, Charles S. Ecological Chemicals as Ecosystem Function Mediaters and Potential Lead Pharmaceuticals. UMS Press, 2021. http://dx.doi.org/10.51200/ecologicalchemicalsumspress2021-978-967-2962-94-6.
Texto completoCapítulos de libros sobre el tema "Metaboliti volatili"
Blanck, T. J. J. y E. S. Casella. "Interaction of Volatile Anesthetics with Calcium-Sensitive Sites in the Myocardium". En Cell Calcium Metabolism, 581–91. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5598-4_60.
Texto completoSalwan, Richa, Nidhi Rialch y Vivek Sharma. "Bioactive Volatile Metabolites of Trichoderma: An overview". En Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 87–111. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5862-3_5.
Texto completoHempel, V., W. Heipertz, H.-V. Gärtner y M. Schmelzle. "Metabolism and Acute Toxicity of Volatile Anesthetics". En Inhalation Anesthetics, 41–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71232-6_6.
Texto completoLiu, Yu, Li Zou y Choon Nam Ong. "Untargeted Metabolomic Analysis of Nonvolatile and Volatile Glucosinolates in Brassicaceae". En Plant Secondary Metabolism Engineering, 219–29. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2185-1_18.
Texto completoLauritsen, F. R. y D. Lloyd. "Direct Detection of Volatile Metabolites Produced by Microorganisms". En Mass Spectrometry for the Characterization of Microorganisms, 91–106. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1994-0541.ch007.
Texto completoWüst, Matthias. "Advances in the Analysis of Volatile Isoprenoid Metabolites". En Biotechnology of Isoprenoids, 201–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10_2014_278.
Texto completoWheatley, Ron E. "The Role of Soil Microbial Volatile Products in Community Functional Interactions". En Secondary Metabolites in Soil Ecology, 269–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74543-3_13.
Texto completoRoze, Ludmila V., Randolph M. Beaudry y John E. Linz. "Analysis of Volatile Compounds Emitted by Filamentous Fungi Using Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry". En Fungal Secondary Metabolism, 133–42. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-122-6_9.
Texto completoLemfack, Marie-Chantal, Hubert Bahl, Birgit Piechulla y Nancy Magnus. "The Domain of Bacteria and Their Volatile Metabolic Potential". En Bacterial Volatile Compounds as Mediators of Airborne Interactions, 1–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7293-7_1.
Texto completoIbdah, Mwafaq, Andrew Muchlinski, Mossab Yahyaa, Bhagwat Nawade y Dorothea Tholl. "Carrot Volatile Terpene Metabolism: Terpene Diversity and Biosynthetic Genes". En The Carrot Genome, 279–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03389-7_16.
Texto completoActas de conferencias sobre el tema "Metaboliti volatili"
Jurjevic, Z., G. Rains, D. Wilson, M. Tertuliano, J. Tomberlin y W. Lewis. "86. Volatile Metabolites Associated with Aflatoxigenic and Nontoxigenic Strains of". En AIHce 2006. AIHA, 2006. http://dx.doi.org/10.3320/1.2758993.
Texto completoVrignaud, Marjorie, Zoe Buniazet, Pierre R. Marcoux, Jean Hue, Isabelle Texier-Nogues y Florence Ricoul. "Functionalized nanoporous materials for volatile metabolites monitoring with direct optical transduction". En 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985154.
Texto completoAbdullah, Azian Azamimi, Nur Najwa Amrahuddin y Shigehiko Kanaya. "In silico prediction of biological activity of volatile metabolite using deep learning algorithm". En INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICoBE 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0111582.
Texto completoMartin, J. y P. Gao. "145. Volatile Metabolites Produced by Stachybotrys Chartarum on Rice and Gypsum Board". En AIHce 2000. AIHA, 2000. http://dx.doi.org/10.3320/1.2763472.
Texto completoChaskes, Mark B., Young E. Lee, Elina Toskala, Gurston Nyquist, Bruce Kimball y Mindy Rabinowitz. "Unique Volatile Metabolite Signature of Sinonasal Inverted Papilloma Detectible in Plasma and Nasal Secretions". En 31st Annual Meeting North American Skull Base Society. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1743698.
Texto completoVashisht, Gaurav, Kantida Koysombat, Rachael Hough, Lauren Lett, Sherry Browne, Naomi Lloyd y Chris Probert. "PWE-125 Effect of turmeric on the faecal volatile organic metabolites in healthy individuals". En British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.359.
Texto completoFinnegan, Jason, Bridget Peterkin, Hee-Chan Han, Jennifer M. Yentes, Stephen I. Rennard y Eric J. Markvicka. "Wireless, Battery Free Wearable Electronic Nose". En 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1038.
Texto completoKistenev, Yu V., A. V. Shapovalov, A. V. Borisov y A. I. Knyazkova. "Possibilities of laser spectroscopy for monitoring the profile dynamics of the volatile metabolite in exhaled air". En XXII International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, editado por Gennadii G. Matvienko y Oleg A. Romanovskii. SPIE, 2016. http://dx.doi.org/10.1117/12.2249144.
Texto completoCalalb, Tatiana, Cornelia Fursenco, Maria Gonceariuc y Violeta Butnaras. "Studiul microscopic al trihomilor glandulari și nonglandulari la genotipuri de Lavandula Angustifolia Mill. ssp. Angustifolia". En International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.63.
Texto completoMitsubayashi, Kohji, Po-Jen Chien, Ming Ye, Takuma Suzuki, Koji Toma y Takahiro Arakawa. "Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism". En SPIE BioPhotonics Australasia, editado por Mark R. Hutchinson y Ewa M. Goldys. SPIE, 2016. http://dx.doi.org/10.1117/12.2244660.
Texto completoInformes sobre el tema "Metaboliti volatili"
Galili, Gad, Harry J. Klee y Asaph Aharoni. Elucidating the impact of enhanced conversion of primary to secondary metabolism on phenylpropanoids secondary metabolites associated with flavor, aroma and health in tomato fruits. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7597920.bard.
Texto completoAharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer y Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, julio de 2013. http://dx.doi.org/10.32747/2013.7593400.bard.
Texto completoIbdah, Mwafaq, Dorothea Tholl y Philipp W. Simon. How temperature stress changes carrot flavor: Elucidating the genetic determinants of undesired taste in carrots. United States Department of Agriculture, enero de 2014. http://dx.doi.org/10.32747/2014.7598171.bard.
Texto completoKleman, Isabella. Onion storage diseases and their headspace volatiles. Faculty of Landscape Architecture, Horticulture and Crop Production Science, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.602791tdo5.
Texto completoDudareva, Natalia, Alexander Vainstein, Eran Pichersky y David Weiss. Integrating biochemical and genomic approaches to elucidate C6-C2 volatile production: improvement of floral scent and fruit aroma. United States Department of Agriculture, septiembre de 2007. http://dx.doi.org/10.32747/2007.7696514.bard.
Texto completoEyal, Yoram, Gloria Moore y Efraim Lewinsohn. Study and Manipulation of the Flavanoid Biosynthetic Pathway in Citrus for Flavor Engineering and Seedless Fruit. United States Department of Agriculture, octubre de 2003. http://dx.doi.org/10.32747/2003.7570547.bard.
Texto completo