Literatura académica sobre el tema "Mesospheric inversion layer"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mesospheric inversion layer".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Mesospheric inversion layer"

1

Fadnavis, S. y G. Beig. "Mesospheric temperature inversions over the Indian tropical region". Annales Geophysicae 22, n.º 10 (3 de noviembre de 2004): 3375–82. http://dx.doi.org/10.5194/angeo-22-3375-2004.

Texto completo
Resumen
Abstract. To study the mesospheric temperature inversion, daily temperature profiles obtained from the Halogen Occultation Experiment (HALOE) aboard the Upper Atmospheric Research Satellite (UARS) during the period 1991-2001 over the Indian tropical region (0-30° N, 60-100° E) have been analyzed for the altitude range 34-86km. The frequency of occurrence of inversion is found to be 67% over this period, which shows a strong semiannual cycle, with a maximum occurring one month after equinoxes (May and November). Amplitude of inversion is found to be as high as 40K. Variation of monthly mean peak and bottom heights along with amplitude of inversions also show the semiannual cycle. The inversion layer is detected most frequently in the altitude range of 70-85km, with peak height ranging from 80 to 83km and that of the bottom height from 72 to 74km. A comparison of frequency of temperature inversion with that obtained from Rayleigh lidar observations over Gadanki (13.5° N, 60-100° E) is found to be reasonable. The seasonal variation of amplitude and frequency of occurrence of temperature inversion indicates a good correlation with seasonal variation of average ozone concentration over the altitude range of the inversion layer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Le Du, Thurian, Philippe Keckhut, Alain Hauchecorne y Pierre Simoneau. "Observation of Gravity Wave Vertical Propagation through a Mesospheric Inversion Layer". Atmosphere 13, n.º 7 (22 de junio de 2022): 1003. http://dx.doi.org/10.3390/atmos13071003.

Texto completo
Resumen
The impact of a mesospheric temperature inversion on the vertical propagation of gravity waves has been investigated using OH airglow images and ground-based Rayleigh lidar measurements carried out in December 2017 at the Haute-Provence Observatory (OHP, France, 44N). These measurements provide complementary information that allows the vertical propagation of gravity waves to be followed. An intense mesospheric inversion layer (MIL) observed near 60 km of altitude with the lidar disappeared in the middle of the night, offering a unique opportunity to evaluate its impact on gravity wave (GW) propagation observed above the inversion with airglow cameras. With these two instruments, a wave with a 150 min period was observed and was also identified in meteorological analyses. The gravity waves’ potential energy vertical profile clearly shows the GW energy lost below the inversion altitude and a large increase of gravity wave energy above the inversion in OH airglow images with waves exhibiting higher frequency. MILs are known to cause instabilities at its top part, and this is probably the reason for the enhanced gravity waves observed above.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Collins, R. L., G. A. Lehmacher, M. F. Larsen y K. Mizutani. "Estimates of vertical eddy diffusivity in the upper mesosphere in the presence of a mesospheric inversion layer". Annales Geophysicae 29, n.º 11 (15 de noviembre de 2011): 2019–29. http://dx.doi.org/10.5194/angeo-29-2019-2011.

Texto completo
Resumen
Abstract. Rayleigh and resonance lidar observations were made during the Turbopause experiment at Poker Flat Research Range, Chatanika Alaska (65° N, 147° W) over a 10 h period on the night of 17–18 February 2009. The lidar observations revealed the presence of a strong mesospheric inversion layer (MIL) at 74 km that formed during the observations and was present for over 6 h. The MIL had a maximum temperature of 251 K, amplitude of 27 ± 7 K, a depth of 3.0 km, and overlying lapse rate of 9.4 ± 0.3 K km−1. The MIL was located at the lower edge of the mesospheric sodium layer. During this coincidence the lower edge of the sodium layer was lowered by 2 km to 74 km and the bottomside scale height of the sodium increased from 1 km to 15 km. The structure of the MIL and sodium are analyzed in terms of vertical diffusive transport. The analysis yields a lower bound for the eddy diffusion coefficient of 430 m2 s−1 and the energy dissipation rate of 2.2 mW kg−1 at 76–77 km. This value of the eddy diffusion coefficient, determined from naturally occurring variations in mesospheric temperatures and the sodium layer, is significantly larger than those reported for mean winter values in the Arctic but similar to individual values reported in regions of convective instability by other techniques.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hozumi, Yuta, Akinori Saito, Takeshi Sakanoi, Atsushi Yamazaki y Keisuke Hosokawa. "Mesospheric bores at southern midlatitudes observed by ISS-IMAP/VISI: a first report of an undulating wave front". Atmospheric Chemistry and Physics 18, n.º 22 (19 de noviembre de 2018): 16399–407. http://dx.doi.org/10.5194/acp-18-16399-2018.

Texto completo
Resumen
Abstract. Large-scale spatial structures of mesospheric bores were observed by the Visible and near-Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in the mesospheric O2 airglow at 762 nm wavelength. Two mesospheric bore events in southern midlatitudes are reported in this paper: one event at 48–54∘ S, 10–20∘ E on 9 July 2015 and the other event at 35–43∘ S, 24∘ W–1∘ E on 7 May 2013. For the first event, the temporal evolution of the mesospheric bore was investigated from the difference of two observations in consecutive passes. The estimated eastward speed of the bore is 100 m s−1. The number of trailing waves increased with a rate of 3.5 waves h−1. Anticlockwise rotation with a speed of 20∘ h−1 was also recognized. These parameters are similar to those reported by previous studies based on ground-based measurements, and the similarity supports the validity of VISI observation for mesospheric bores. For the second event, VISI captured a mesospheric bore with a large-scale and undulating wave front. The horizontal extent of the wave front was 2200 km. The long wave front undulated with a wavelength of 1000 km. The undulating wave front is a new feature of mesospheric bores revealed by the wide field of view of VISI. We suggest that nonuniform bore propagating speed due to inhomogeneous background ducting structure might be a cause of the undulation of the wave front. Temperature measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite indicated that bores of both events were ducted in a temperature inversion layer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Siva Kumar, V., Y. Bhavani Kumar, K. Raghunath, P. B. Rao, M. Krishnaiah, K. Mizutani, T. Aoki, M. Yasui y T. Itabe. "Lidar measurements of mesospheric temperature inversion at a low latitude". Annales Geophysicae 19, n.º 8 (31 de agosto de 2001): 1039–44. http://dx.doi.org/10.5194/angeo-19-1039-2001.

Texto completo
Resumen
Abstract. The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.Key words. Atmospheric composition and structure (pressure, density and temperature). Meterology and atmospheric dynamics (climatology)
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ramesh, K., S. Sridharan, K. Raghunath, S. Vijaya Bhaskara Rao y Y. Bhavani Kumar. "Planetary wave-gravity wave interactions during mesospheric inversion layer events". Journal of Geophysical Research: Space Physics 118, n.º 7 (julio de 2013): 4503–15. http://dx.doi.org/10.1002/jgra.50379.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ramesh, K., S. Sridharan y K. Raghunath. "Rayleigh lidar observation of tropical mesospheric inversion layer: a comparison between dynamics and chemistry". EPJ Web of Conferences 176 (2018): 03003. http://dx.doi.org/10.1051/epjconf/201817603003.

Texto completo
Resumen
The Rayleigh lidar at National Atmospheric Research Laboratory, Gadanki (13.5°N, 79.2°E), India operates at 532 nm green laser with ~600 mJ/pulse since 2007. The vertical temperature profiles are derived above ~30 km by assuming the atmosphere is in hydrostatic equilibrium and obeys ideal gas law. A large mesospheric inversion layer (MIL) is observed at ~77.4-84.6 km on the night of 22 March 2007 over Gadanki. Although dynamics and chemistry play vital role, both the mechanisms are compared for the occurrence of the MIL in the present study.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

QIAO Shuai, PAN Weilin, BAN Chao, CHEN Lei y YU Ting. "Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud". Chinese Journal of Space Science 39, n.º 1 (2019): 84. http://dx.doi.org/10.11728/cjss2019.01.084.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Duck, Thomas J., Dwight P. Sipler, Joseph E. Salah y John W. Meriwether. "Rayleigh lidar observations of a mesospheric inversion layer during night and day". Geophysical Research Letters 28, n.º 18 (15 de septiembre de 2001): 3597–600. http://dx.doi.org/10.1029/2001gl013409.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

McDade, Ian C. y Edward J. Llewellyn. "Satellite airglow limb tomography: Methods for recovering structured emission rates in the mesospheric airglow layer". Canadian Journal of Physics 71, n.º 11-12 (1 de noviembre de 1993): 552–63. http://dx.doi.org/10.1139/p93-084.

Texto completo
Resumen
In this paper, we investigate the possibility of using satellite airglow limb tomography to study spatial structures in the airglow emissions of the upper mesosphere and lower thermosphere. We describe inversion procedures for converting satellite airglow limb observations into two-dimensional distributions of volume emission rates. The performance of the inversion procedures is assessed using simulated limb observations and we demonstrate the potential of this tomographic technique for studying the horizontal and vertical characteristics of wave-driven disturbances in the 80–100 km region.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Mesospheric inversion layer"

1

Mariaccia, Alexis. "Interaction ondes-écoulement moyen et impact sur la variabilité de la moyenne atmosphère". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASJ025.

Texto completo
Resumen
La moyenne atmosphère s'étend de 10 à 90 km et englobe à la fois la stratosphère (10 à 50 km) et la mésosphère (50 à 90 km). L'équilibre présent dans la moyenne atmosphère est le résultat de la propagation verticale d'ondes atmosphériques de petites et grandes échelles redistribuant le moment angulaire à travers l'atmosphère. Ces ondes perturbent notablement le flux moyen lorsqu'elles se brisent, déposant ainsi leur quantité de mouvement et leur énergie, ce qui impacte la circulation générale. De plus, cette interaction onde-écoulement moyen est responsable de l'existence de phénomènes régissant la variabilité observée dans la moyenne atmosphère. Notamment, les deux plus marquants sont les échauffements stratosphériques soudains (ESSs) et les inversions de température mésosphériques (ITMs). Plus spécifiquement, les ESSs se manifestent en hiver par une augmentation de la température de la calotte polaire (40 à 60 K) et un affaiblissement du vortex polaire pouvant même inverser les vents d'ouest pour les cas les plus extrêmes. Un vortex polaire perturbé peut ensuite influencer la météo troposphérique au cours des mois suivants en générant, par exemple, des vagues de froid intenses. Les ITMs représentent une augmentation inattendue de la température (10 à 50 K) se produisant dans la mésosphère pendant plusieurs jours et s'étendant sur des milliers de kilomètres. De plus, les ITMs peuvent poser des problèmes importants pour la rentrée en toute sécurité des fusées, des navettes spatiales ou des missiles dans l'atmosphère suscitant davantage d'intérêt pour cet événement. Ainsi, pendant de nombreuses années, ces deux phénomènes ont été étudiés par la communauté scientifique cherchant à comprendre leur mécanisme d'apparition et leurs effets sur l'atmosphère. L'émergence de la technologie LiDAR et l'amélioration des produits de réanalyse archivant le climat passé ont rendu leur étude plus accessible.Dans cette thèse, l'objectif est d'apporter des avancées dans la compréhension et la description des phénomènes ESS et ITM grâce à de nouvelles observations LiDAR acquises à l'Observatoire de Haute-Provence (44°N, 6°E) et à la dernière génération de produit de réanalyse, ERA5, couvrant la période de 1940 à aujourd'hui. Pour commencer notre étude de ces phénomènes à travers les données ERA5, nous avons initialement évalué la capacité d'ERA5 à reproduire la variabilité dans la moyenne atmosphère en la comparant aux observations LiDAR. Nous avons constaté que la variabilité stratosphérique observée pendant l'hiver, y compris celle générée par les ESSs, est reproduite avec précision dans la réanalyse ERA5. Cependant, le modèle ne parvient pas à reproduire cette précision à la fois dans la stratosphère d'été et dans la mésosphère, quelle que soit la saison, en raison soit de l'absence ou de la simulation imprécise des événements ITMs. De plus, nous présentons de nouvelles observations de la température et du vent co-localisées pendant les événements ITMs et évaluons comment ERA5 simule le vent en présence de ITMs. Une décélération du vent se produit dans la même gamme d'altitude que l'augmentation de la température, ce qui confirme le rôle des ondes de gravité dans l'apparition de ce phénomène. À la lumière de ces résultats, la réanalyse ERA5 contenue dans la stratosphère et la troposphère a été utilisée exclusivement pour étudier, premièrement, les principaux déroulés de la stratosphère d'hiver modulés par le timing des ESSs, et ensuite, leurs liens verticaux tout au long des mois d'hiver. De manière intéressante, nous avons découvert qu'en hiver dans l'hémisphère nord, la stratosphère suit quatre scénarios distincts qui présentent des couplages stratosphère-troposphère différents. Notamment, nous avons identifié des précurseurs de surface notables associés à ces scénarios qui pourraient potentiellement avoir des applications pour la prévision saisonnière
The middle atmosphere spans from 10 to 90 km and comprises the stratosphere (10 to 50 km) and the mesosphere (50 to 90 km). The equilibrium in the middle atmosphere results from the vertical propagation of small- and large-scale atmospheric waves redistributing the angular momentum across the atmosphere. These waves notably perturb the mean flow when they break, depositing their momentum and energy impacting the general circulation. Moreover, this wave-mean flow interaction is responsible for phenomena governing the observed variability in the middle atmosphere. Notably, the two most dramatic are the sudden stratospheric warmings (SSWs) and the mesospheric inversion layers (MILs). Specifically, SSWs manifest in winter by increasing the polar cap temperature (40 to 60 K) and weakening the polar vortex, which can reverse the westerly winds for the most extreme cases. A perturbed polar vortex can then impact the tropospheric weather in the following months by generating, for instance, severe cold air outbreaks. MILs represent an unexpected increase in temperature (10 to 50 K) occurring in the mesosphere, lasting several days and spanning thousands of kilometers. Moreover, MILs can represent significant issues for the safe reentry of rockets, space shuttles, or missiles into the atmosphere, sparking more interest in this phenomenon. For many years, the scientific community has investigated these two phenomena to understand their mechanism of occurrence and their effects on the atmosphere. The emergence of LiDAR technology and improved reanalysis products archiving the past climate has made their study more accessible.In this thesis, the objective is to make advancements in the understanding and the description of SSW and MIL phenomena with new LiDAR observations acquired at the Observatoire of Haute-Provence (44°N, 6°E) and the last generation of reanalysis product, ERA5, lasting from 1940 until the present. To commence our study of these phenomena through ERA5 data, we initially evaluated the capability of ERA5 in replicating the variability in the middle atmosphere by comparing it with LiDAR observations. We found that the observed stratospheric variability during wintertime, including the one generated by SSWs, is accurately reproduced in ERA5 reanalysis. However, the model cannot replicate this accuracy in the summer stratosphere and mesosphere, regardless the season, due to either the absence or imprecise simulation of MIL events. Additionally, we present new co-located temperature-wind observations during MIL events and assess how ERA5 simulates wind in the presence of MIL. A deceleration in wind occurs in the same altitude range as the temperature enhancement, supporting the role of gravity waves in the apparition of this phenomenon. In light of these findings, the ERA5 reanalysis in the stratosphere and the troposphere was solely used to study the main winter stratosphere unfoldings modulated by the timing of SSWs and their vertical links throughout winter months. Interestingly, we discovered that during wintertime in the northern hemisphere, the stratosphere follows four separate scenarios with distinct stratosphere-troposphere couplings. We found notable surface precursors associated with these scenarios that could potentially have applications for seasonal prediction
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Mesospheric inversion layer"

1

Dunlop, Storm. 1. The atmosphere. Oxford University Press, 2017. http://dx.doi.org/10.1093/actrade/9780199571314.003.0001.

Texto completo
Resumen
‘The atmosphere’ describes the different layers of the atmosphere and the boundaries between them—troposphere, tropopause, stratosphere, mesopause, mesosphere, ionosphere, and thermosphere—and explains why temperature generally declines with increased altitude: a decrease in pressure causes a parcel of air to expand and cool. The change in temperature with altitude is known as the lapse rate and any decrease or increase in lapse rate is known as an inversion. The inversion at the top of the troposphere is a major feature, always present in the atmosphere. The measuring and charting of atmospheric pressure using barometers is described along with the composition of the atmosphere and the greenhouse effect is explained.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Mesospheric inversion layer"

1

"Pollution of the Atmosphere". En Environmental Toxicology, editado por Sigmund F. Zakrzewski. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195148114.003.0015.

Texto completo
Resumen
The earth’s atmosphere consists of 78% (by volume) of N2; 21% O2; about 0.033% CO2; trace amounts of noble gases, NOx, and CH3; and variable amounts of water vapor. At sea level, the amount of water vapor may vary from 0.5 g per kg of air in polar regions to more then 20 g per kg in the tropics. The standard atmosphere is a theoretical set of data that serves as a reference point for calculation of atmospheric changes due to the weather. The values are calculated for sea level conditions and correspond to a pressure of 760 mm of mercury (92.29 in., 1013.25 mbar), an air density of 1.22 kg/m3, and a temperature of 15°C (59 °F). The composition of the air within the troposphere, which is the lowest layer of the atmosphere, does not change with altitude; however, the pressure and temperature decrease with altitude. The relationship between altitude and pressure in the standard atmosphere is shown in Figure 10.1, and the relationship between altitude and temperature is shown in Figure 10.2. The rate of decrease of temperature with altitude (6.49 °C per km) is referred to as the ‘‘standard lapse rate’’. This rate is a strictly theoretical average value because the actual lapse rate varies depending on the weather. Because the air density is proportional to the pressure and inversely proportional to the temperature, it changes at the same rate as the pressure does. The atmosphere is divided into troposphere, stratosphere, mesosphere, and ionosphere. As shown in this figure, the division is based on temperature inversions that occur at the higher altitudes; the altitudes of these inversions vary with the season and with the geographic latitude. Although the general shape of the curves remains the same for all latitudes, the altitudes of the inversions are higher over the equator and lower over the poles; the curves presented in Figure 10.3 refer to middle latitudes. The boundary areas at each temperature inversion are called tropopause, stratopause, and mesopause, respectively. Pollution of the atmosphere is generally the least appreciated of all environmental issues.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Mesospheric inversion layer"

1

Wintersteiner, Peter P. y Edward Cohen. Observations and Modeling of the Upper Mesosphere: Mesopause Characteristics, Inversion Layers, and Bores. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2005. http://dx.doi.org/10.21236/ada447582.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía