Artículos de revistas sobre el tema "Mesoscopic transport in graphene"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Mesoscopic transport in graphene.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Mesoscopic transport in graphene".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Xu, N., J. W. Ding, B. L. Wang, D. N. Shi y H. Q. Sun. "Transport properties of mesoscopic graphene rings". Physica B: Condensed Matter 407, n.º 3 (febrero de 2012): 335–39. http://dx.doi.org/10.1016/j.physb.2011.10.049.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Racolta, D. y C. Micu. "The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures". Annals of West University of Timisoara - Physics 57, n.º 1 (1 de diciembre de 2013): 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.

Texto completo
Resumen
Abstract In this paper we discuss interplays between the Aharonov-Bohm effect and the transport properties in mesoscopic ring structures based on graphene. The interlayer interaction leads to a change of the electronic structure of bilayer graphene ring such that the electronic energy dispersion law exhibits a gap, either by doping one of the layers or by the application of an external perpendicular electric field. Gap adjustments can be done by varying the external electric field, which provides the possibility of obtaining mesoscopic devices based on the electronic properties of bilayer graphene. This opens the way to controllable manipulations of phase-coherent mesoscopic phenomena, as well as to Aharonov-Bohm oscillations depending on the height of the potential step and on the radius of the ring. For this purpose one resorts to a tight-binding model such as used to the description of conductance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sánchez, Fernando, Vicenta Sánchez y Chumin Wang. "Independent Dual-Channel Approach to Mesoscopic Graphene Transistors". Nanomaterials 12, n.º 18 (16 de septiembre de 2022): 3223. http://dx.doi.org/10.3390/nano12183223.

Texto completo
Resumen
Graphene field-effect transistors (GFETs) exhibit unique switch and sensing features. In this article, GFETs are investigated within the tight-binding formalism, including quantum capacitance correction, where the graphene ribbons with reconstructed armchair edges are mapped into a set of independent dual channels through a unitary transformation. A new transfer matrix method is further developed to analyze the electron transport in each dual channel under a back gate voltage, while the electronic density of states of graphene ribbons with transversal dislocations are calculated using the retarded Green’s function and a novel real-space renormalization method. The Landauer electrical conductance obtained from these transfer matrices was confirmed by the Kubo–Greenwood formula, and the numerical results for the limiting cases were verified on the basis of analytical results. Finally, the size- and gate-voltage-dependent source-drain currents in GFETs are calculated, whose results are compared with the experimental data.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bhalla, Pankaj y Surender Pratap. "Aspects of electron transport in zigzag graphene nanoribbons". International Journal of Modern Physics B 32, n.º 12 (3 de mayo de 2018): 1850148. http://dx.doi.org/10.1142/s0217979218501485.

Texto completo
Resumen
In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

da Silva, Juliana M., Fernando A. F. Santana, Jorge G. G. S. Ramos y Anderson L. R. Barbosa. "Spin Hall angle in single-layer graphene". Journal of Applied Physics 132, n.º 18 (14 de noviembre de 2022): 183901. http://dx.doi.org/10.1063/5.0107212.

Texto completo
Resumen
We investigate the spin Hall effect in a single-layer graphene device with disorder and interface-induced spin–orbit coupling. Our graphene device is connected to four semi-infinite leads that are embedded in a Landauer–Büttiker setup for quantum transport. We show that the spin Hall angle of graphene devices exhibits mesoscopic fluctuations that are similar to metal devices. Furthermore, the product between the maximum spin Hall angle deviation and dimensionless longitudinal conductivity follows a universal relationship [Formula: see text]. Finally, we compare the universal relation with recent experimental data and numerically exact real-space simulations from the tight-binding model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

João, Simão M. y João M. Viana Parente Lopes. "Non-linear optical response in disordered 2D materials". EPJ Web of Conferences 233 (2020): 03002. http://dx.doi.org/10.1051/epjconf/202023303002.

Texto completo
Resumen
Using KITE [1], a quantum transport software developed by ourselves, we explore the effect of disorder in the second-order con¬ductivity, aiming to reproduce mesoscopic samples under more realistic models of disorder. This work will be concerned about our most recent results with KITE. We will showcase and examine how different mod¬els of disorder affect the same system, experimenting with Anderson disorder and vacancies in gapped Graphene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Raineri, Vito, Emanuele Rimini y Filippo Giannazzo. "Mesoscopic Transport Properties in Exfoliated Graphene on SiO2/Si". Nanoscience and Nanotechnology Letters 3, n.º 1 (1 de febrero de 2011): 55–58. http://dx.doi.org/10.1166/nnl.2011.1119.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

., Amardeep y Vijay Kr Lamba. "Study and Modeling of Graphene-Boron-Nitride Heterostructures". SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 14, n.º 03 (15 de julio de 2022): 337–40. http://dx.doi.org/10.18090/samriddhi.v14i03.14.

Texto completo
Resumen
When we talk about nano devices, the molecule and its interface with electrodes play a key role. So, one of the major objectives is to select an organic nanomaterial with extensive applications, which requires smart synthesis of appropriate materials and an understanding of their properties. Here we modeled a device, which not only adds another “protuberance” to learn about the transport properties of the molecule but also helps in grasping its use as a considerable material for future flexible electronics. Modeling of materials at the nano-level not only provides fundamental insight into the properties of crystalline defects but also gives a reasonable understanding of phase stability and learning of processes like atomic diffusion interface migration. For the development of devices at a mesoscopic and macroscopic level and with atomistic input parameters, this recognition serves as a guide. We tried to model how the layers of one type of molecule and the interaction of two different types of molecular layers control the junction charge transport characteristics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nam Do, V., V. Hung Nguyen, P. Dollfus y A. Bournel. "Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures". Journal of Applied Physics 104, n.º 6 (15 de septiembre de 2008): 063708. http://dx.doi.org/10.1063/1.2980045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Skachko, I., X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov y E. Y. Andrei. "Fractional quantum Hall effect in suspended graphene probed with two-terminal measurements". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, n.º 1932 (13 de diciembre de 2010): 5403–16. http://dx.doi.org/10.1098/rsta.2010.0226.

Texto completo
Resumen
Recently, fractional quantization of two-terminal conductance was reported in suspended graphene. The quantization, which was clearly visible in fields as low as 2 T and persistent up to 20 K in 12 T, was attributed to the formation of an incompressible fractional quantum Hall state. Here, we argue that the failure of earlier experiments to detect the integer and fractional quantum Hall effect with a Hall-bar lead geometry is a consequence of the invasive character of voltage probes in mesoscopic samples, which are easily shorted out owing to the formation of hot spots near the edges of the sample. This conclusion is supported by a detailed comparison with a solvable transport model. We also consider, and rule out, an alternative interpretation of the quantization in terms of the formation of a p–n–p junction, which could result from contact doping or density inhomogeneity. Finally, we discuss the estimate of the quasi-particle gap of the quantum Hall state. The gap value, obtained from the transport data using a conformal mapping technique, is considerably larger than in GaAs-based two-dimensional electron systems, reflecting the stronger Coulomb interactions in graphene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Rozhkov, A. V., G. Giavaras, Yury P. Bliokh, Valentin Freilikher y Franco Nori. "Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport". Physics Reports 503, n.º 2-3 (junio de 2011): 77–114. http://dx.doi.org/10.1016/j.physrep.2011.02.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Widianto, Eri, Shobih, Erlyta Septa Rosa, Kuwat Triyana, Natalita Maulani Nursam y Iman Santoso. "Graphene oxide as an effective hole transport material for low-cost carbon-based mesoscopic perovskite solar cells". Advances in Natural Sciences: Nanoscience and Nanotechnology 12, n.º 3 (1 de septiembre de 2021): 035001. http://dx.doi.org/10.1088/2043-6262/ac204a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Biel, Blanca, Alessandro Cresti, Rémi Avriller, Simon Dubois, Alejandro López-Bezanilla, François Triozon, X. Blase, Jean-Christophe Charlier y Stephan Roche. "Mobility gaps in disordered graphene-based materials: an ab initio -based tight-binding approach to mesoscopic transport". physica status solidi (c) 7, n.º 11-12 (16 de agosto de 2010): 2628–31. http://dx.doi.org/10.1002/pssc.200983826.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kadhim, Adam K., Mohammad R. Mohammad, Atheer I. Abd Ali y Mustafa K. A. Mohammed. "Reduced Graphene Oxide/Bi2O3 Composite as a Desirable Candidate to Modify the Electron Transport Layer of Mesoscopic Perovskite Solar Cells". Energy & Fuels 35, n.º 10 (12 de mayo de 2021): 8944–52. http://dx.doi.org/10.1021/acs.energyfuels.1c00848.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zhou, Huawei, Jie Yin, Zhonghao Nie, Zhaojin Yang, Dongjie Li, Junhu Wang, Xin Liu, Changzi Jin, Xianxi Zhang y Tingli Ma. "Earth-abundant and nano-micro composite catalysts of Fe3O4@reduced graphene oxide for green and economical mesoscopic photovoltaic devices with high efficiencies up to 9%". Journal of Materials Chemistry A 4, n.º 1 (2016): 67–73. http://dx.doi.org/10.1039/c5ta06525a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Das, Mukunda P. y Frederick Green. "Mesoscopic transport revisited". Journal of Physics: Condensed Matter 21, n.º 10 (13 de febrero de 2009): 101001. http://dx.doi.org/10.1088/0953-8984/21/10/101001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Weiss, C. "Coherently controlled mesoscopic transport". Laser Physics Letters 3, n.º 4 (1 de abril de 2006): 212–15. http://dx.doi.org/10.1002/lapl.200510084.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Horsell, D. W., A. K. Savchenko, F. V. Tikhonenko, K. Kechedzhi, I. V. Lerner y V. I. Fal’ko. "Mesoscopic conductance fluctuations in graphene". Solid State Communications 149, n.º 27-28 (julio de 2009): 1041–45. http://dx.doi.org/10.1016/j.ssc.2009.02.058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sánchez, David y Michael Moskalets. "Quantum Transport in Mesoscopic Systems". Entropy 22, n.º 9 (1 de septiembre de 2020): 977. http://dx.doi.org/10.3390/e22090977.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Altshuler, B. L. "Transport Phenomena in Mesoscopic Systems". Japanese Journal of Applied Physics 26, S3-3 (1 de enero de 1987): 1938. http://dx.doi.org/10.7567/jjaps.26s3.1938.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ng, T. K. "Nonlinear transport in mesoscopic systems". Physical Review Letters 68, n.º 7 (17 de febrero de 1992): 1018–21. http://dx.doi.org/10.1103/physrevlett.68.1018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Datta, Supriyo y Henk van Houten. "Electronic Transport in Mesoscopic Systems". Physics Today 49, n.º 5 (mayo de 1996): 70. http://dx.doi.org/10.1063/1.2807624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Okiji, Ayao, Hideaki Kasai y Atsunobu Nakamura. "Ballistic Transport in Mesoscopic Systems". Progress of Theoretical Physics Supplement 106 (1991): 209–24. http://dx.doi.org/10.1143/ptps.106.209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sarkozy, Stephen J., Kantimay Das Gupta, Francois Sfigakis, Ian Farrer, David Ritchie, Geb Jones, Po-Hsin Liu, Helen Quach y Michael Pepper. "Mesoscopic Transport in Undoped Heterostructures". ECS Transactions 16, n.º 7 (18 de diciembre de 2019): 59–64. http://dx.doi.org/10.1149/1.2983159.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Heinonen, O. y M. D. Johnson. "Mesoscopic transport beyond linear response". Physical Review Letters 71, n.º 9 (30 de agosto de 1993): 1447–50. http://dx.doi.org/10.1103/physrevlett.71.1447.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Maiti, Santanu K. "Electron transport through mesoscopic ring". Physica E: Low-dimensional Systems and Nanostructures 36, n.º 2 (febrero de 2007): 199–204. http://dx.doi.org/10.1016/j.physe.2006.10.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Singh, Navinder. "Quantum transport in mesoscopic systems". Resonance 15, n.º 11 (noviembre de 2010): 988–1002. http://dx.doi.org/10.1007/s12045-010-0115-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Jalabert, Rodolfo. "Mesoscopic transport and quantum chaos". Scholarpedia 11, n.º 1 (2016): 30946. http://dx.doi.org/10.4249/scholarpedia.30946.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Das, Mukunda P. y Frederick Green. "Nonequilibrium mesoscopic transport: a genealogy". Journal of Physics: Condensed Matter 24, n.º 18 (17 de abril de 2012): 183201. http://dx.doi.org/10.1088/0953-8984/24/18/183201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Okiji, A., H. Kasai y A. Nakamura. "Ballistic Transport in Mesoscopic Systems". Progress of Theoretical Physics Supplement 106 (16 de mayo de 2013): 209–24. http://dx.doi.org/10.1143/ptp.106.209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Levinson, Y. B. y B. Shapiro. "Mesoscopic transport at finite frequencies". Physical Review B 46, n.º 23 (15 de diciembre de 1992): 15520–22. http://dx.doi.org/10.1103/physrevb.46.15520.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Bruynseraede, Y., L. Gielen, C. Strunk, G. Neuttiens, L. Stockman, C. Van Haesendonck y V. V. Moshchalkov. "Electron transport in mesoscopic structures". Nanostructured Materials 6, n.º 1-4 (enero de 1995): 169–78. http://dx.doi.org/10.1016/0965-9773(95)00040-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Angelescu, D. E., M. C. Cross y M. L. Roukes. "Heat transport in mesoscopic systems". Superlattices and Microstructures 23, n.º 3-4 (marzo de 1998): 673–89. http://dx.doi.org/10.1006/spmi.1997.0561.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Bohra, G., R. Somphonsane, D. K. Ferry y J. P. Bird. "Robust mesoscopic fluctuations in disordered graphene". Applied Physics Letters 101, n.º 9 (27 de agosto de 2012): 093110. http://dx.doi.org/10.1063/1.4748167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Mahelona, Keoni K., Alan B. Kaiser y Viera Skákalová. "Resistance and mesoscopic fluctuations in graphene". physica status solidi (b) 247, n.º 11-12 (27 de septiembre de 2010): 2983–87. http://dx.doi.org/10.1002/pssb.201000307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Seidel, Yvonne E., Zenonas Jusys, Björn Wickman, Bengt Kasemo y R. Jürgen Behm. "Mesoscopic Transport Effects in Electrocatalytic Reactions". ECS Transactions 25, n.º 23 (17 de diciembre de 2019): 91–102. http://dx.doi.org/10.1149/1.3328514.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Chen, Z. y R. S. Sorbello. "Inelasticity and nonlinearity in mesoscopic transport". Physical Review B 44, n.º 23 (15 de diciembre de 1991): 12857–67. http://dx.doi.org/10.1103/physrevb.44.12857.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zhou, F., B. Spivak y B. Altshuler. "Mesoscopic Mechanism of Adiabatic Charge Transport". Physical Review Letters 82, n.º 3 (18 de enero de 1999): 608–11. http://dx.doi.org/10.1103/physrevlett.82.608.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Johnson, M. D. y O. Heinonen. "Nonlinear steady-state mesoscopic transport: Formalism". Physical Review B 51, n.º 20 (15 de mayo de 1995): 14421–36. http://dx.doi.org/10.1103/physrevb.51.14421.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Bird, J. P., K. Ishibashi, Y. Aoyagi, T. Sugano, R. Akis, D. K. Ferry, D. P. Pivin et al. "Quantum transport in open mesoscopic cavities". Chaos, Solitons & Fractals 8, n.º 7-8 (julio de 1997): 1299–324. http://dx.doi.org/10.1016/s0960-0779(97)00021-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Goel, N., J. Graham, J. C. Keay, K. Suzuki, S. Miyashita, M. B. Santos y Y. Hirayama. "Ballistic transport in InSb mesoscopic structures". Physica E: Low-dimensional Systems and Nanostructures 26, n.º 1-4 (febrero de 2005): 455–59. http://dx.doi.org/10.1016/j.physe.2004.08.080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

de Vegvar, P. G. N., T. A. Fulton, W. H. Mallison y R. E. Miller. "Mesoscopic Transport in Tunable Andreev Interferometers". Physical Review Letters 73, n.º 10 (5 de septiembre de 1994): 1416–19. http://dx.doi.org/10.1103/physrevlett.73.1416.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Olivares-Robles, M. A. y L. S. García-Colín. "Mesoscopic derivation of hyperbolic transport equations". Physical Review E 50, n.º 4 (1 de octubre de 1994): 2451–57. http://dx.doi.org/10.1103/physreve.50.2451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Zirnbauer, Martin R. "Fourier inversion theorem in mesoscopic transport". Physica A: Statistical Mechanics and its Applications 167, n.º 1 (agosto de 1990): 132–39. http://dx.doi.org/10.1016/0378-4371(90)90047-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Martin, T. "Wavepackets for mesoscopic transport with interactions". Superlattices and Microstructures 23, n.º 3-4 (marzo de 1998): 859–69. http://dx.doi.org/10.1006/spmi.1997.0547.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Wendin, Göran y Vitaly S. Shumeiko. "Josephson transport in complex mesoscopic structures". Superlattices and Microstructures 20, n.º 4 (diciembre de 1996): 569–73. http://dx.doi.org/10.1006/spmi.1996.0116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Sachrajda, A. S., Y. Feng, H. A. Carmona, A. K. Geim, P. C. Main, L. Eaves y C. T. Foxon. "Mesoscopic transport properties of composite fermions". Surface Science 361-362 (julio de 1996): 59–62. http://dx.doi.org/10.1016/0039-6028(96)00352-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kouwenhoven, L. P., N. C. van der Vaart, Yu V. Nazarov, S. Jauhar, D. Dixon, K. McCormick, J. Orenstein et al. "High-frequency transport through mesoscopic structures". Surface Science 361-362 (julio de 1996): 591–94. http://dx.doi.org/10.1016/0039-6028(96)00477-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Kolesnikova, Anna L., Mikhail A. Rozhkov, Nikita D. Abramenko y Alexey E. Romanov. "On mesoscopic description of interfaces in graphene". Physics of Complex Systems 1, n.º 4 (2020): 129–34. http://dx.doi.org/10.33910/2687-153x-2020-1-4-129-134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Chuang, Chiashain, Li-Hung Lin, Nobuyuki Aoki, Takahiro Ouchi, Akram M. Mahjoub, Tak-Pong Woo, Reuben K. Puddy, Yuichi Ochiai, C. G. Smith y Chi-Te Liang. "Mesoscopic conductance fluctuations in multi-layer graphene". Applied Physics Letters 103, n.º 4 (22 de julio de 2013): 043117. http://dx.doi.org/10.1063/1.4816721.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía