Tesis sobre el tema "Mémoire non volatile, NVM"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 43 mejores tesis para su investigación sobre el tema "Mémoire non volatile, NVM".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Jovanovic, Natalija. "Bascules et registres non-volatiles à base de ReRAM en technologies CMOS avancées". Electronic Thesis or Diss., Paris, ENST, 2016. http://www.theses.fr/2016ENST0023.
Texto completoNon-volatile memories and flip-flops can improve the energy efficiency in battery-operated devices by eliminating the sleep-mode consumption, while maintaining the system state. Among emerging embedded NVM technologies, ReRAMs differentiate itself with a fast programming time, a simple CMOS-compatible structure and a good scalability. Previously proposed ReRAM-based non-volatile flip-flops (NVFF) have been implemented in 90nm or older CMOS nodes and suffer from CMOS reliability issues in scaled nodes due to high programming and forming voltages. This thesis makes the analysis of robust and reliable non-volatile design in 28nm CMOS node and below. It presents two novel thin-gate oxide CMOS design solutions for the programming of ReRAM devices. The programming circuits are applied in dual-voltage NVFF architecture which employs two ReRAM devices (2R). Alternative 1R NVFF architecture is also proposed in order to achieve higher density and lower consumption. With regard to the existing ReRAM technologies, given NVFF solutions are optimized for ReRAM programming conditions which improve endurance and minimize programming power. Statistical analysis of the FF core and its optimization was performed, to evaluate the best restore operation architectures which meet digital CMOS circuit design yield requirements. The NVFFs are implemented in 28nm CMOS FDSOI and benchmarked against a master slave flip-flop from a standard library and a data-retention flip-flop. Finally, to minimize the NVFF area overhead without impacting the robustness of \nv{} operations, multi-port non-volatile register file (NVRF) based on the 1R NVFF solution is proposed
Innocenti, Jordan. "Conception et procédés de fabrication avancés pour l’électronique ultra-basse consommation en technologie CMOS 80 nm avec mémoire non volatile embarquée". Thesis, Nice, 2015. http://www.theses.fr/2015NICE4142/document.
Texto completoThe increase of the scope of application and the performance of microcontrollers is accompanied by an increase in power consumption reducing the life-time of mobile systems (smartphones, tablets, laptops, biomedical implants, …). Here, the work consists of reducing the dynamic consumption of circuits manufactured in embedded non-volatile memories (e-NVM) CMOS 80 nm technology by improving the performance of MOS transistors. In order to increase the carriers’ mobility, manufacturing techniques used in the most advanced technological nodes (40 nm, 32 nm) are firstly studied according to different criteria (process integration, cost, current/performance gain). Then, selected techniques are optimized and adapted to be used on an e-NVM technological platform. The next step is to study how to transform the current gain into dynamic power gain without impacting the static consumption. To do so, the supply voltage and the transistor widths are reduced. Up to 20 % in dynamic current gain is demonstrated using ring oscillators and a digital circuit designed with 20,000 standard cells. The methodology applied on the circuit allows automatic reduction to all transistor widths without additional design modifications. Finally, a last study is performed in order to optimize the consumption, the performance and the area of digital standard cells through design improvements and by reducing the mechanical stress of STI oxide
Barlas, Marios Dimitrios. "Development and characterization of innovative nonvolatile OxRAM memory cells compatible with advanced nodes". Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0229.
Texto completoTransition Metal Oxide ReRAM is a class of non-volatile memory technologies where the switching between memory states is enabled by the reversible breakdown of the oxide by means of the creation and dissolution of a percolation path (filament). The main advantages of the technology lie in the scalability of the memory cell –mainly owed to the sub 10nm dimension of the filament, its low power consumption (< 300 pJ/ switch) and material compatibility to advanced CMOS. Nevertheless, there are two major roadblocks that have prevented so far the implementation of ReRAM in large arrays: first, the requirement for an initial breakdown happening voltages significantly higher than the operating voltage range and second, the intrinsic and extrinsic variability components arising from material interaction to its environment as well as the fundamental stochastic nature of percolative conduction. This work, is focused on HfO2 based ReRAM technology. In the first part, we investigate different dopants to engineer the conductive properties of HfO2 by combining a first-principles approach and in-depth material characterization techniques. In the second part, the proposed HfSiOx alloy is integrated in the BEOL of a 130nm process and the impact of the integration of the switching zone in forming, switching, error rate evolution and data retention is investigated. In the last part, a HfO2 based integration in the early MOL of an advanced FDSOI 300mm CMOS process is demonstrated investigating standard HfO2 ReRAM performances and limitations
Chatzistergiou, Andreas. "Library support for historical and persistent data structures in non-volatile memories". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25797.
Texto completoGuilmain, Marc. "Fabrication de mémoire monoélectronique non volatile par une approche de nanogrille flottante". Thèse, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6127.
Texto completoBossu, Germain. "Architectures innovantes de mémoire non-volatile embarquée sur film mince de silicium". Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11044.
Texto completoCMOS platforms are heading silicon thin film to face parasitic effects blocking bulk transistor scaling. This technological option is opening the way of new non-volatile memory device architectures. This PhD study deals with thin film technology tuning to turn into dense embedded non-volatile memory working with standard circuit power supply for an easy co-integration on bulk and thin film CMOS platforms. The first proposed SQeRAM cell is based on Silicon-On-Nothing technology process flow added to bulk CMOS core process. The resulting memory point presents charges stored at the opposite interface of inversion layer. This memory device is quasi-non-volatile due to a thin ONO stack allowing 3V only power supply. A semi-analytical model is developed to describe Independent Double Gate transistor considering electrons, holes and doping level. By the association of this approach with a charge-sheet Bulk transistor model, SQeRAM physical phenomena are detailed. In addition technological optimization is discussed to allow double-bit applications. SQeRAM scaling limitations, particularly technological process control, leads me to imagine another new non-volatile memory point built on a pure thin film IDG transistor. Concept, realization and specificities are described. The associated model developed drives physical mechanisms analysis of the main electrical characteristics versus trapped charge density. At last my PhD thesis brings up the guidelines of a new hybrid memory based on silicon thin film device combining non-volatile storage and floating body properties of the 1T-DRAM
Nail, Cécile. "Etude de mémoire non-volatile hybride CBRAM OXRAM pour faible consommation et forte fiabilité". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT010/document.
Texto completoAs Information Technologies (IT) are still growing, memory devices need to evolve to answer IT market demands. Nowadays, new technologies are emerging and are entering the market. Resistive Random Access Memory (RRAM) are part of these emerging devices and offer great advantages in terms of power consumption, performances, density and the possibility to be integrated in the back end of line. However, to be competitive, some roadblocks still have to be overcome especially regarding technology variability, reliability and thermal stability. Their place on memory market is then still undefined. Moreover, as RRAM working principle depends on stack materials and has to be observed at nanometer resolution, switching mechanism understanding is still challenging. This thesis proposes an analysis of oxide-based CBRAM microscopic working principle based on electrical characterization results and atomistic simulation. Then, an interdependence between RRAM electrical performances as well as material parameters is studied to point out new parameters that can be taken into account to target specific memory applications
Puglia, Gianlucca Oliveira. "Exploring atomicity on memory mapped files based on non-volatile memory file systems". Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2017. http://tede2.pucrs.br/tede2/handle/tede/7768.
Texto completoApproved for entry into archive by Tatiana Lopes (tatiana.lopes@pucrs.br) on 2017-12-18T11:25:26Z (GMT) No. of bitstreams: 1 Gianlucca_Oliveira_Puglia_dis.pdf: 2043630 bytes, checksum: f7fc70f33d1d15b56eded8458fbed2fa (MD5)
Made available in DSpace on 2017-12-18T11:49:55Z (GMT). No. of bitstreams: 1 Gianlucca_Oliveira_Puglia_dis.pdf: 2043630 bytes, checksum: f7fc70f33d1d15b56eded8458fbed2fa (MD5) Previous issue date: 2017-03-21
As tecnologias de mem?rias n?o-vol?teis s?o uma grande promessa na ?rea de arquitetura de computadores e ? esperado que sejam poderosas ferramentas para solucionar os problemas referentes a manipula??o eficiente de dados dos dias de hoje. Estas tecnologias prov?m alta performance e acesso em granularidade de bytes com a distinta vantagem de serem persistentes. Por?m, afim de explorar estas tecnologias em todo seu potencial, os sistemas e arquiteturas de hoje precisam buscar meios de se adaptar a esta nova forma de acessar dados e de superar os desafios que v?m com ela.Trabalhos existentes na ?rea j? prop?em m?todos para adaptar as arquiteturas existentes para o uso de NVM bem como formas inovadoras de empregar estas mem?rias em futuras aplica??es. No entanto, o suporte dos sistemas operacionais a estas solu??es, ainda que existente, ainda ? muito limitado. Neste trabalho, n?s apresentamos duas varia??es da chamada de sistema msync, modeladas para explorar as caracter?sticas das tecnologias de NVM e garantir consist?ncia para os dados dos usu?rios. Ambas s?o solu??es simples que permitem aos usu?rios definirem checkpoints de seus arquivos usando a sintaxe comum de sistemas de arquivos. N?s implementamos e testamos estes m?todos sobre o sistema operacional Linux utilizando como base um sistema de arquivo nativamente voltado a NVM. Nossos resultados mostram que estes mecanismos s?o capazes de garantir a integridade dos arquivos mesmo na presen?a de falhas no sistema enquanto mant?m uma performance razo?vel.
Upcoming non-volatile memory technologies are a big promise in computer architecture and are expected to be powerful tools to address today?s issues regarding efficient data manipulation. They provide high performance and byte granularity while also having the distinct advantage of being persistent. However in order to explore these technologies to their full potential, existing systems and architecture must adapt to this new way of working with data and workaround the challenges that come with it. Existing work in the area already proposes methods to adapt existing architecture to NVM as well as innovative ways to employ these memories in future applications. However operating system support to such NVM-enabled solutions, although existent, still very limited. In this work, we present two variations of the existing mmap system call, designed to both explore NVM characteristics and provide user data consistency. Both are very simple solutions that allow users to control the persistence and define checkpoints to their files while using the common mapped file syntax. We have implemented and tested these methods over Linux using a NVM file system as our base. Our results show that these mechanisms can ensure file integrity in the presence of system failures while also providing a reasonable performance.
Yao, Thierry. "Modélisation et conception d'une mémoire non-volatile dédiée aux applications bas coût télé-alimentées". Paris, ENST, 2002. http://www.theses.fr/2002ENST0018.
Texto completoDelizy, Tristan. "Gestion de la mémoire dynamique pour les systèmes embarqués avec mémoire hétérogène". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI134.
Texto completoReducing energy consumption is a key challenge to the realisation of the Internet of Things. While emerging memory technologies may offer power reduction and high integration density, they come with major drawbacks such as high latency or limited endurance. As a result, system designers tend to juxtapose several memory technologies on the same chip. We aim to provide the embedded application programmer with a transparent software mechanism to leverage this memory heterogeneity. This work studies the interaction between dynamic memory allocation and memory heterogeneity. We provide cycle accurate simulation of embedded platforms with various memory technologies and we show that different dynamic allocation strategies have a major impact on performance. We demonstrates that interesting performance gains can be achieved even for a low fraction of memory using low latency technology, but only with a clever placement strategy between memory banks. We propose an efficient strategy based on application profiling in our simulator
Agharben, El Amine. "Optimisation et réduction de la variabilité d’une nouvelle architecture mémoire non volatile ultra basse consommation". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEM013.
Texto completoThe global semiconductor market is experiencing steady growth due to the development of consumer electronics and the wake of the non-volatile memory market. The importance of these memory products has been accentuated since the beginning of the 2000s by the introduction of nomadic products such as smartphones or, more recently, the Internet of things. Because of their performance and reliability, Flash technology is currently the standard for non-volatile memory. However, the high cost of microelectronic equipment makes it impossible to depreciate them on a technological generation. This encourages industry to adapt equipment from an older generation to more demanding manufacturing processes. This strategy is not without consequence on the spread of the physical characteristics (geometric dimension, thickness ...) and electrical (current, voltage ...) of the devices. In this context, the subject of my thesis is “Optimization and reduction of the variability of a new architecture ultra-low power non-volatile memory”.This study aims to continue the work begun by STMicroelectronics on the improvement, study and implementation of Run-to-Run (R2R) control loops on a new ultra-low power memory cell. In order to ensure the implementation of a relevant regulation, it is essential to be able to simulate the process manufacturing influence on the electrical behavior of the cells, using statistical tools as well as the electric characterization
Bocquet, Marc. "Intégration de matériaux à forte permittivité électrique (High-k) dans les mémoires non-volatiles pour les générations sub-45 nm". Grenoble INPG, 2009. http://www.theses.fr/2009INPG0156.
Texto completoFlash memory is today a major element for the development of the portable electronics which require more and more memory capability at low cost (netbook, cell phones, PDA, USB sticks. . . ). Ln order to maintain it for the years to come, it is necessary to continue improving this technology. Also, the integration of High-K materials and the use of trap charge memories are strongly envisaged. This PhD focuses on the integration and the electrical study of the most promising High-K materials (Hf02, HfAIO, Ah03, HfSiON) for non-volatile memory applications. These materials are then integrated in nanocristal memories and nitride charge trap memories. The analysis of the memory performances was made through a modelling study of the involved physical mechanisms. Ln particular, a complete SONOS-like model is proposed to explain the experimental results
Nowak, Étienne. "Impact of geometry on charge trap non volatile memories". Grenoble INPG, 2010. http://www.theses.fr/2010INPG0121.
Texto completoFlash memory is today a major element for the development of all mobile devices which require even more memory capabilities at low cost. In order to overcome the gigabit per mm2 density, it is necessary to continue the improvement of this technology. As a result, charge trap non volatile memory integrated in 3D arrays are envisaged with particular cell geometry. This PhD focuses on the impact of the geometry in charge trap non volatile memory cell for standalone and embedded applications. Theoretical analyses of charge trap memory in planar and multi-gate geometry have been performed with extensive electrical characterization, analytical and numerical modeling, and TCAD simulations. In particular, charge trap Gate-All Around and charge trap FinFET structures for standalone applications and charge trap Split-Gate structures for embedded applications are investigated
Harabech, Nadia. "Modélisation, caractérisation et contribution à l'amélioration des performances des mémoires non-volatiles de type EEPROM". Paris, ENST, 2002. http://www.theses.fr/2002ENST0002.
Texto completoDogan, Rabia. "System Level Exploration of RRAM for SRAM Replacement". Thesis, Linköpings universitet, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92819.
Texto completoGirault, Valérie. "Etude de la creation de protons mobiles dans l'oxyde de silicium et application à un système de mémoire non volatile". Lyon, INSA, 2001. http://www.theses.fr/2001ISAL0001.
Texto completoThe development and the optimisation of non-volatile memory devices lead the very reliable EEPROM and FLASH EEPROM memories to become the major part of the world production. In order to build a device as reliable as the previous ones and consuming still less energy, a new idea for a non-volatile memory device emerged in 1996. The running mode of this new device type uses the migration of protons in the gate oxide of a MOSFET transistor. These protons are created after annealing the device under a hydrogenated atmosphere. The present thesis was then initiated to understand and develop such a new type of non-volatile memory device. First, a complete experimental study of the particular conditions necessary for the proton creation in the silicon dioxide is presented. Elementary devices made on Silicon-On-Insulator (SOI) substrates were used to lead this study since these substrates first allowed the proton creation. Very promising characteristics were obtained on the elementary SOI-based devices and the replacement of the costly SOI structure has been the next development step. More standard processes and standard materials, such as the thermal silicon dioxide, were chosen. Only the hydrogen treatment necessary to allow the proton creation had to be added in the making. Once the previous step reached, we tried to make a proper non-volatile memory MOSFET transistor. The thermal silicon dioxide was used as the gate oxide and several techniques and treatments were attempted to subsequently allow the proton creation. On one hand, the transistors really presented migrating protons in their gate oxide, but on the other hand, their electrical characteristics evidenced major running deficiencies, which avoid its future making. Nevertheless, this study was useful to better understand the chemical reactions between the silicon dioxide and the hydrogen gas, which is very commonly, used components in many technological processes in microelectronics today
Chang, Sungjae. "Caractérisation, mécanismes et applications mémoire des transistors avancés sur SOI". Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00951428.
Texto completoLehninger, David. "Größenkontrollierte Herstellung von Ge-Nanokristallen in Hoch-Epsilon-Dielektrika auf Basis von ZrO2". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2018. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-236209.
Texto completoMora, Pascal. "Étude et caractérisation de la fiabilité de cellules mémoire non volatiles pour des technologies CMOS et BICMOS avancées". Grenoble INPG, 2007. http://www.theses.fr/2007INPG0065.
Texto completoToday, the "Flash like" memory solutions compatible with CMOS technologies are in great demand. However, their integration in digital technologies is more and more difficult due to physical barriers related to the non volatility of the structure. Indeed, several process steps are not optimized for this type of device and induce reliability issues. Ln this context, the thesis consists of three major axes of work. First we have studied the failure mechanisms. The second axe is the evaluation of the impact of both the processes and the architecture on the cell reliability. The last objective is to improve the test structures and the analysis methods. A focus is performed on the data retention aspect through a thorough study of the fast charge loss phenomenon. Indeed, this is a critical issue of the reliability of embedded non volatile memories. The technological solutions proposed make it possible to push forward the limits of the integration of such kind of memories
Alhaj, Ali Khaled. "New design approaches for flexible architectures and in-memory computing based on memristor technologies". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0197.
Texto completoThe recent development of new non-volatile memory technologies based on the memristor concept has triggered many research efforts to explore their potential usage in different application domains. The distinctive features of memristive devices and their suitability for CMOS integration are expected to lead for novel architecture design paradigms enabling unprecedented levels of energy efficiency, density, and reconfigurability. In this context, the goal of this thesis work was to explore and introduce new memristor based designs that combine flexibility and efficiency through the proposal of original architectures that break the limits of the existing ones. This exploration and study have been conducted at three levels: interconnect, processing, and memory levels. At interconnect level, we have explored the use of memristive devices to allow high degree of flexibility based on programmable interconnects. This allows to propose the first memristor-based reconfigurable fast Fourier transform architecture, namely mrFFT. Memristors are inserted as reconfigurable switches at the level of interconnects in order to establish flexible on-chip routing. At processing level, we have explored the use of memristive devices and their integration with CMOS technologies for combinational logic design. Such hybrid memristor-CMOS designs exploit the high integration density of memristors in order to improve the performance of digital designs, and particularly arithmetic logic units. At memory level, we have explored new in-memory computing approaches and proposed a novel logic design style, namely Memristor Overwrite Logic (MOL), associated with an original MOL-based computational memory. The proposed approach allows efficient combination of storage and processing in order to bypass the memory wall problem and thus to improve the computational efficiency. The proposed approach has been applied in three real application case studies for the sake of validation and performance evaluation
Lopes, Jeremy. "Design of an Innovative GALS (Globally Asynchronous Locally Synchronous), Non-Volatile Integrated Circuit for Space Applications". Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS052/document.
Texto completoToday, there are several ways to develop microelectronic circuits adapted for space applications that meet the harsh constraints of immunity towards radiation, whether in terms of technical design or manufacturing process. The aim of this doctorate is on the one hand to combine several novel techniques of microelectronics to design architectures adapted to this type of application, and on the other hand to incorporate non-volatile magnetic components inherently robust to radiation. Such an assembly would be quite innovative and would benefit without precedent, in terms of surface, consumption, robustness and cost.In contrast with synchronous circuit designs that rely on a clock signal, asynchronous circuits have the advantage of being more or less insensitive to delay variations resulting for example from variations in the manufacturing process. Furthermore, by avoiding the use of a clock, asynchronous circuits have relatively low power consumption. Asynchronous circuits are generally designed to operate based on events determined using a specific handshake protocol.For aviation and/or spatial applications, it would be desirable to provide an asynchronous circuit that is rendered robust against the effects of radiation. Indeed, the presence of ionising particles at high altitudes or in space can induce currents in integrated circuits that may be enough to cause a flip in the binary state held by one or more gates. This may cause the circuit to malfunction, known in the art as a single event upset (SEU). It has been proposed to provide dual modular redundancy (DMR) or triple modular redundancy (TMR) in an asynchronous circuit design in order to provide radiation protection. Such techniques rely on duplicating the circuit in the case of DMR, or triplicating the circuit in the case of TMR, and detecting a discordance between the outputs of the circuits as an indication of the occurrence of an SEU.The integration of inherently robust non-volatile components, such as Magnetic Tunnel Junctions (MTJ), the main element of MRAM memory, could lead to new ways of data retention in harsh environments. MTJ devices are constituted of ferromagnetic materials with magnetic properties that are not sensitive to radiation. Data is stored in the form of the direction of the magnetisation and not in the form of an electric charge, which is an essential property for space applications. It is also widely recognised in the field of microelectronics that integrated circuits manufactured on SOI (Silicon On Insulator) substrates are more robust to radiation.There is thus a need in the art for a circuit having relatively low surface area and power consumption, and that allows recovery following an SEU without requiring a reset and that has non-volatile characteristics. The objective of this doctorate is to combine all the above mentioned benefits by regrouping several methods of microelectronic design responding to the constraints of space applications into a novel architecture. A complete circuit has been created, designed, simulated, validated and sent to manufacturing in a 28nm FD-SOI process. This circuit is composed of an adder pipeline and a complex BIST (Build In Self Test). When fabricated, this circuit will be tested. First a functional test will be realised, then laser pules attacks will be performed and finally a heavy ions attack campaign
Singh, Amit Kumar. "Caractérisation des Mémoires Non-Volatiles Résistives par Microscopie à Force Atomique en mode Conduction (C-AFM) sous Ultravide". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT033.
Texto completoMemories are the fundamental for any electronic system we interact with in our daily life and are getting more and more important day by day in our present era. The growing functionalities and performance of the electronic products such as digital cameras, smart phone, personal computer, solid state hard disk and many more, need continues improvement of its features. Floating gate-based Flash technology is the main NVM technology used extensively in market these days. Nevertheless, Flash technology presents many problems making further scaling impossible. In this context, there are many other memory technologies emerging and interest in new concepts and materials to go beyond the Flash technology is growing. Resistive non-volatile memories based on two terminal devices, in which an active material is sandwiched between two electrodes have been investigated. The main idea of using this kind of structure and material is to use a specific physical mechanism allowing to switch it between two different resistive states for information storage. For example, in oxide based random-access memory (OxRAM), a conductive filament is grown inside the oxide layer, linking the two electrodes. By creation and disruption of this filament, two different resistance states can be generated. Another example is the phase change random-access memory (PCRAM), in which a chalcogenide material with the ability to change its phase between a high resistive amorphous and a low resistive crystalline state is used. Over the last few years OxRAM has been widely investigated due to many advantages like good scalability, long data retention time, fast read & write speed and low power consumption. The main benefit is that it is compatible with Back-end of line fabrication. In MIM structures for OxRAM, forming and disruption of the nanometer sized conductive filament is commonly accepted as the physical phenomenon for the switching, but still a debate is going on to understand the nature and characteristics of the conductive filament. Also, many studies have been done to evaluate the scaling capability of OxRAM and PCRAM. Hence, in this thesis work we studied mechanisms related to the conductive filament based resistive switching at nanoscale. To do the electrical characterization, a new technique using conductive atomic force microscopy (C-AFM) in ultra-high vacuum is proposed. The impact of different AFM tip materials (which is used as top electrode), different bottom electrode materials and the compliance current effect in two different regimes (in nA and in µA) are investigated. It is found that in the case of HfO2 based OxRAM, the filament is formed by Ti diffusion from the bottom electrode through the oxide layer. The results are in good agreement with device characteristics and could be reproduced by modeling. Also, phase transition in phase change materials for PCRAM is investigated for Ge2Sb2Te5 (GST-225) and Ge rich GST. It was found that the phase transition from amorphous to crystalline is possible at nanoscale. Finally, the threshold for GST-225 is observed at values nearer to those observed on devices than former observations with standard C-AFM
Oukid, Ismail. "Architectural Principles for Database Systems on Storage-Class Memory". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232482.
Texto completoDeloge, Matthieu. "Analysis of ultrathin gate-oxide breakdown mechanisms and applications to antifuse memories fabricated in advanced CMOS processes". Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0097/document.
Texto completoNon-volatile one-time programmable memories are gaining an ever growing interest in embedded electronics. Chip ID, chip configuration or system repairing are among the numerous applications addressed by this type of semiconductor memories. In addition, the antifuse technology enables the storage of secured information with respect to cryptography or else. The thesis focuses on the understanding of ultrathin gate-oxide breakdown physics that is involved in the programming of antifuse bitcells. The integration of advanced programming and detection schemes is also tackled in this thesis. The breakdown mechanisms in the dielectric material SiO2 and high-K under a high electric field were studied. Dedicated experimental setups were needed in order to perform the characterization of antifuse bitcells under the conditions define in memory product. Typical time-to-breakdown values shorter than a micro second were identified. The latter measurements allowed the statistical study of dielectric breakdown and the modeling in a high voltage range, i.e. beyond the conventional range studied in reliability. The model presented in this PhD thesis enables the optimization of the antifuse bitcell sizes according to a targeted mean time-to- breakdown value. A particular mechanism leading to a high bulk current overshoot occuring during the programming operation was highlighted. The study of this phenomenon was achieved using electrical characterizations and simulations. The triggering of a parasitic P-N-P bipolar transistor localized in the antifuse bitcell appeared as a relevant hypothesis. The analysis of the impact of the programming conditions on the resulting read current measured under a low voltage was performed using analog test structures. The amplitude of the programming current was controlled in an augmented antifuse bitcell. The programming time is controlled by a programming detection system and a delay. Finally, these solutions are to be validated using a 1-kb demonstrator yet designed and fabricated in a logic 32-nm CMOS process
Montagner, Morancho Laurence. "Nouvelle méthode de test en rétention de données de mémoires non volatiles". Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2004. http://tel.archives-ouvertes.fr/tel-00135027.
Texto completoAoukar, Manuela. "Dépôt de matériaux à changement de phase par PE-MOCVD à injection liquide pulsée pour des applications mémoires PCRAM". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT075/document.
Texto completoPhase change random access memories PCRAM are based on the fast and reversible switch between the high resistive amorphous state and the low resistive crystalline state of a phase change material (PCM). These memories are considered to be one of the most promising candidates for the next generation of non volatile memories thanks to their unique set of features such as fast programming speed, multi-level storage capability, good endurance and high scalability. However, high power consumption during the RESET operation (IRESET) is the main challenge that PCRAM has to face in order to explode the non volatile memory market. In this context, it has been demonstrated that by integrating the phase change material (PCM) in high aspect ratio lithographic structures, the heating efficiency is improved leading to a reduced reset current. In order to fill such confined structures with the phase change material, a highly conformal deposition process is required. Therefore, a pulsed liquid injection Plasma Enhanced-Metal Organic Chemical Vapor Deposition process (PE-MOCVD) was developed in this work. First, amorphous and homogeneous GeTe films were deposited using the organometallic precursors TDMAGe and DIPTe as Ge and Te precursors. XPS measurements revealed a stoichiometric composition of GeTe but with high carbon contamination. Thus, one of the objectives of this work was to reduce the carbon contamination and to optimize the phase change properties of the deposited PCMs. The effect of deposition parameters such as plasma power, pressure and gas rate on the carbon contamination is then presented. By tuning and optimizing deposition parameters, GeTe films with carbon level as low at 2 at. % were obtained. Thereafter, homogeneous films of GeSbTe were deposited by injecting simultaneously the organometallic precursors TDMAGe, TDMASb and DiPTe in the plasma. A wide range of compositions was obtained by varying the injection and deposition operating parameters. Indeed, one of the main advantages of this process is the ability of varying films composition, which results in varying phase change characteristics of the deposited PCM. The impact of plasma parameters on the conformity of the process was also studied. It was shown that by adding a low frequency power component to the radio frequency power of the plasma, structures with high aspect ratio were successfully filled with the phase change material. Finally, electrical characterization of PCRAM test devices integrating phase change materials deposited by PE-MOCVD as active material have presented electrical properties similar to the ones obtained for materials deposited by conventional physical vapor deposition (PVD) process
Guenery, Pierre-Vincent. "Nanostructures d’oxyde d’indium pour les mémoires résistives RRAM intégrées en CMOS Back-End-Of-Line". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI114.
Texto completoThe current computer memories are nothing more than the extreme miniaturization of the technology developed in the 1960s. These memories reached technological limits that are technically difficult and very costly to overcome. Memories must therefore be reinvented by a profound change in their shape, such as the development of three-dimensional structures for example, or by the use of innovative technologies. A new physical phenomenon in the field of memories interested us during this thesis. It consists in an electrically and reversibly control of the resistivity of a structure that can reach at least two level to code the information in a durable way. These memories are called non-volatile resistive memories. A lot of research is being carried out to understand and control this technology. The main current defect of this emerging technology is its lack of reproducibility. We propose an original approach consisting in the integration of indium oxide nanoparticles into the structure of a resistive memory that is directly compatible with existing chips. The purpose of particle integration is to increase the homogeneity of these memories by controlling the electrical behaviour of the structure. The study initially focused on the challenges of memory manufacturing and in particular on the deposition of nanoparticles. To have a beneficial effect, the manufacture of these products must be perfectly controlled. The study then details the electrical characterization of the memories. We discuss about the phenomena that are at the origin of the change in resistivity in order to try to better control them
Jacob, Stéphanie. "Intégration, caractérisation et modélisation des mémoires non-volatiles à nanocristaux de silicium". Phd thesis, Université de Provence - Aix-Marseille I, 2009. http://tel.archives-ouvertes.fr/tel-00408813.
Texto completoLiao, Si-yu. "Caractérisation électrique et électro-optique de transistor à base de nanotube de carbone en vue de leur modélisation compacte". Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14254/document.
Texto completoThis PhD thesis presents a computationally efficient physics-based compact model for optically-gated carbon nanotube field effect transistors (OG-CNTFETs), especially in the non-volatile memory application. This model includes memory operations such as “read”, “write”, “erase” or “program”, and “reset” which are modeled using trapping and detrapping mechanisms at the polymer/oxide interface. The relaxation of the memory state is taken into account. Furthermore, the self-consistent modeling of Schottky barriers at contacts between the carbon nanotube channel and metal electrodes is integrated in this model applying the effective Schottky barrier method. The Schottky contact model can be included in CNTFET based devices for a typical biasing range of carbon nanotube transistors. This compact model is validated by the good agreement between simulation results and experimental data (I-V characteristics). In the non-volatile memory application, this model can fully reproduce device behaviors in transient simulations. A prediction study of the key technological parameter, the CNT diameter variety is established to expect its impact on the transistor performance, and more importantly, on the memory operation. In the other hand, this thesis presents a preliminary electric characterization (I-V) of CNTFETs and OG-CNTFETs for the device modeling database. A preliminary optoelectronic characterization method is proposed
Bartoli, Jonathan. "Développement et caractérisation d'architectures mémoires non volatiles pour des applications basse consommation". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4373.
Texto completoWith the evolution of technologies and the development of connected objects, the circuit consumption is becoming an important subject. In this thesis, we focus on the consumption of trap-charge non-volatile memories. To decrease the consumption, different architectures have emerged, like 2T or Split Gate memories. We propose two new memory architectures allowing to decrease the consumption compared to the standard Flash memory. The first, called ATW (Asymmetrical Tunnel Window), is composed of an oxide step in the tunnel oxide which allows to be less consumer than a standard Flash memory. A second memory architecture called eSTM (embedded Select Trench Memory) is also presented. Its main advantage is its select transistor which is essential to obtain a lower consumption. Thanks to its architecture, this cell is better than the previously proposed architecture (ATW). The last study has been performed to optimize the process flow of the eSTM memory to make it more robust
Liao, Si-Yu. "Caractérisation électrique et électro-optique de transistor à base de nanotube de carbone en vue de leur modélisation compacte". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00592479.
Texto completoTirano, Sauveur. "Intégration et caractérisation électrique d'éléments de mémorisation à commutation de résistance de type back-end à base d'oxydes métalliques". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4713/document.
Texto completoThis work is focused on the electrical characterization and physical modeling of emerging OxRRAM memories (Oxide Resistive Random Access Memory) integrating nickel or hafnium oxide. After reaching maturity, this memory concept is likely to replace the Flash technology which is still a standard in the CMOS industry. The main advantages of resistive memories technology is their good compatibility with CMOS processes, a small number of manufacturing steps, a high integration density and their attractive performances in terms of memory operation. The first objective of this thesis is to provide enough informations allowing to orientate the elaboration process of the active nickel oxide layer (thermal oxidation, reactive sputtering) then to compare the performances of the fabricated cells with devices featuring a hafnium oxide layer. The second objective is to understand the physical mechanisms responsible of the device resistance change. A physical model is proposed allowing to apprehend SET and RESET phenomenon in memory devices, subject which is still widely debated in the scientific community. The third objective of this thesis is to evaluate electrical parasitic phenomenon observed in 1R-type memory elements (resistive element without addressing device), in particular the parasitic capacitance appearing during cell programming (writing operation)
Kiouseloglou, Athanasios. "Caractérisation et conception d' architectures basées sur des mémoires à changement de phase". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT128/document.
Texto completoSemiconductor memory has always been an indispensable component of modern electronic systems. The increasing demand for highly scaled memory devices has led to the development of reliable non-volatile memories that are used in computing systems for permanent data storage and are capable of achieving high data rates, with the same or lower power dissipation levels as those of current advanced memory solutions.Among the emerging non-volatile memory technologies, Phase Change Memory (PCM) is the most promising candidate to replace conventional Flash memory technology. PCM offers a wide variety of features, such as fast read and write access, excellent scalability potential, baseline CMOS compatibility and exceptional high-temperature data retention and endurance performances, and can therefore pave the way for applications not only in memory devices, but also in energy demanding, high-performance computer systems. However, some reliability issues still need to be addressed in order for PCM to establish itself as a competitive Flash memory replacement.This work focuses on the study of embedded Phase Change Memory in order to optimize device performance and propose solutions to overcome the key bottlenecks of the technology, targeting high-temperature applications. In order to enhance the reliability of the technology, the stoichiometry of the phase change material was appropriately engineered and dopants were added, resulting in an optimized thermal stability of the device. A decrease in the programming speed of the memory technology was also reported, along with a residual resistivity drift of the low resistance state towards higher resistance values over time.A novel programming technique was introduced, thanks to which the programming speed of the devices was improved and, at the same time, the resistance drift phenomenon could be successfully addressed. Moreover, an algorithm for programming PCM devices to multiple bits per cell using a single-pulse procedure was also presented. A pulse generator dedicated to provide the desired voltage pulses at its output was designed and experimentally tested, fitting the programming demands of a wide variety of materials under study and enabling accurate programming targeting the performance optimization of the technology
Marzaki, Abderrezak. "Développement de technique de procédé de fabrication innovante et de nouvelle architecture de transistor MOS". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4768.
Texto completoThe component miniaturization and the circuit performance improvement are due to the progress related to the manufacturing process. Despite the number of existing technology, the CMOS technology is the most used. In the 90nm CMOS technology development, with a double poly-silicon level, the research on the introduction of innovative manufacturing process techniques and a new architecture of MOS transistor with an adjustable threshold voltage are carried out to improve the integrated circuit performances. A first study, on the peak effect implementation in the integrated circuits, particularly in the non-volatile memories is undertaken. A new process to obtain a peak effect in a material is proposed. It is shown the tunnel current gain obtained on a peak structure compared with a planar structure. A second study is focused on the development of a new patterning technique. The patterning techniques allow to reduce the photolithography dimensions without using an aggressive mask. The advantages of this new technique in terms of its implementation and the suppression of alignment problems are presented. A last study on the development of a MOS transistor with an adjustable threshold voltage is developed. It is shown the advantage of this component relative to the other components with an adjustable threshold voltage. The model implementation and the first electrical simulations of elementary circuits composed with this new component are presented. The performance improvement of some elementary circuits is demonstrated
Ngueya, Wandji Steve. "Conception de circuits mémoires flash pour plateforme ultra faible consommation". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0586.
Texto completoThe market of secure connected devices is booming and requires low power development platforms for contactless applications in reduced form factors. The reduction in the form factor impacts the antenna size and thus leads to a decrease of the energy available in the chip, which should reduce drastically its consumption while keeping performances. One of the main contributors to the chip consumption is the embedded non-volatile memory (eNVM) used for storage and code execution. Therefore, for a given technology, it is necessary to design peripheral blocks of the memory array under strong consumption constraints. The aim of the thesis is to select a very low-power embedded nonvolatile memory technology compatible with the classical CMOS process, to identify the critical blocks during the operations of the memory, and finally to propose solutions to minimize the power consumption of each critical block.In order to do this, a study of all the embedded non-volatile memories available on the market is carried out. It emerges that the Flash technology, in particular the SuperFlash® ESF3 based NOR Flash technology, is best suited for remote-powered systems. The study of the NOR Flash macrocell shows that during write and erase operations, the system consumption is mainly related to the high voltage generation by charge pumps. However, during a read operation, overall performances of the system is determined by the sense amplifier. A design work for each individual block is then implemented to reduce consumption
Mahato, Prabir. "Study and development of resistive memories for flexible electronic applications". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI134.
Texto completoThe advent of flexible electronics has brought about rapid research towards sensors, bio implantable and wearable devices for assessment of diseases such as epilepsy, Parkinson’s and heart attacks. Memory devices are major component in any electronic circuits, only secondary to transistors, therefore many research efforts are devoted to the development of flexible memory devices. Conductive Bridge Random Access Memories (CBRAMs) based on creation/dissolution of a metallic filament within a solid electrolyte are of great research interest because of their simple Metal Insulator Metal architecture, low-voltage capabilities, and compatibility with flexible substrates. In this work, instead of a conventional metallic oxide or a chalcogenide layer, a biocompatible polymer - Polyethylene Oxide (PEO) – is employed as the solid electrolyte layer using water as solvent. Memory devices, consisting in Ag/PEO/Pt tri-layer stacks, were fabricated on both silicon and flexible substrates using a heterogeneous process combining physical vapour deposition and spin coating. To aim this, a systematic study on the effect of solution concentration and deposition speed on the PEO thickness is presented. SEM/EDX and AFM measurements were then conducted on devoted “nano-gap” planar structures and have revealed the formation of metallic Ag precipitates together with morphological changes of the polymer layer after resistance switching. The performance of the resistive memory devices is then assessed on silicon and flexible substrates. In particular programming voltage statistics, OFF/ON resistance ratio, endurance cycles and retention tests are performed and the effect of current compliance is analysed. The conduction mechanism in the HRS/LRS is studied on the Ag/PEO/Pt and Pt/PEO/Pt reference devices. Finally, the electrical characterization of devices on flexible substrate is performed under mechanical stress, showing promising results. Polymer-based CBRAM devices are therefore suggested as potential candidates for sustainable development of flexible memory devices
Charbonneau, Micaël. "Etude et développement de points mémoires résistifs polymères pour les architectures Cross-Bar". Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT116/document.
Texto completoOver the past decade, non-volatile Flash storage technologies have played a major role in the development of mobile electronics and multimedia (MP3, Smartphone, USB, ultraportable computers ...). To further enhance performances, increase the capacity and reduce manufacturing costs, new technological solutions are now studied to provide complementary solutions or replace Flash technology. Cited by ITRS, the polymer resistive memories present very promising characteristics: low cost processing and ability for integration at high densities above CMOS interconnections or on flexible substrate. This PhD specifically focused on the development and study of composite material made of Poly-Methyl-Methacrylate (PMMA) polymer resist doped with C60 fullerene molecules. Studies were carried out on three different axes in parallel: Composite materials development & characterization, integration of the organic material in specific test structure and advanced devices and finally detailed electrical characterization of memory cells and performances analysis
Zhou-LiChen y 陳周利. "Relaxing Object Versioning Efficiently with ROVER-NVM in Non-Volatile Memory". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3rs5a9.
Texto completoLersch, Lucas. "Leveraging Non-Volatile Memory in Modern Storage Management Architectures". 2020. https://tud.qucosa.de/id/qucosa%3A74887.
Texto completoΠροδρομάκης, Αντώνιος. "Μοντελοποίηση και εξομοίωση των χαρακτηριστικών γήρανσης NV μνημών". Thesis, 2015. http://hdl.handle.net/10889/8815.
Texto completoOver the last few years, non-volatle memory (NVM) has shown a great potential in replacing volatile memory, like DRAM in caching applications, and magnetic HDDs in storage applications. NAND Flash-based solid state drives (SSDs) have already emerged as a low-cost, high-performance and reliable storage medium for both commercial and enterprise storage systems. Additionally, the properties of phase-change materials and the recent scaling of Phase-Change Memory (PCM) has made it a perfect candidate for developing phase-change random access memories (PCRAMs). The rapid scaling of NVMs, with process nodes below 19nm, and the use of multi-level cell (MLC) technologies has increased their storage density and reduced the storage cost per bit. However, their lifetime capacity has not remained unaffected. Different interferences and noise sources along with aging effects have now a great impact on the reliability and endurance of these memory technologies, and hence, on the storage systems where these memories are used (SSDs, PCRAMs). Numerous techniques, such as wear-leveling, specialized error correcting codes (ECC) and precoding techniques have been employed to compensate these effects, while others, more complex but also more efficient, like dynamic adaptation of read reference thresholds, are at an experimental level. The development of these techniques is based on experimental characterization of NVM cells and chips. Characterization is related with measuring bit error ratio (BER) and response time (read and write time) during the whole lifetime of a device, for various loading data patterns and timing scenarios. This process is performed using real NVM integrated chips, usually the engineering, pre-production parts, while more thorough testing at the system level is performed when production parts are available. This approach has two major drawbacks. On one hand it is a very time-consuming process, since the aging of an NVM may require a large number of program/erase (P/E) cycles to be performed for each experiment, ranging from tens of thousands (NAND Flash) to millions (PCM) program cycles. On the other hand, the aging characteristics of an NVM are proportionally dependent on the number of the performed P/E cycles, thus making it impossible to conduct different or successive experiments at the same aging state of a memory chip. In this work, we present a model that accurately represents the aging process of an NVM cell, by treating it as a time-variant communications channel, based on an asymmetric n-PAM model. We present the architecture of a flexible FPGA-based platform, designed for accurate emulations of NVM technologies, focusing mainly on MLC NAND Flash technologies. Accuracy is measured in reference to experimentally specified bit error probabilities for various aging conditions (ie. the number of P/E cycles applied to a NAND Flash chip), usually for random data patterns. The hardware platform presented in this work is based on a reconfigurable hardware-software architecture, which enables the accurate emulation of new and emerging models and technologies of NVMs. The developed platform can be a valuable tool for the evaluation of memory-related algorithms, signal processing and coding techniques.
Bocquet, Marc. "Intégration de matériaux à forte permittivité électrique (High-k) dans les mémoires non-volatiles pour les générations sub-45nm". Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00559617.
Texto completoLehninger, David. "Größenkontrollierte Herstellung von Ge-Nanokristallen in Hoch-Epsilon-Dielektrika auf Basis von ZrO2". Doctoral thesis, 2017. https://tubaf.qucosa.de/id/qucosa%3A23235.
Texto completoOukid, Ismail. "Architectural Principles for Database Systems on Storage-Class Memory". Doctoral thesis, 2017. https://tud.qucosa.de/id/qucosa%3A30750.
Texto completo