Tesis sobre el tema "Mémoire à changement de phase (PCM)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 46 mejores tesis para su investigación sobre el tema "Mémoire à changement de phase (PCM)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Pigot, Corentin. "Caractérisation électrique et modélisation compacte de mémoires à changement de phase". Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0185.
Texto completoPhase-change memory (PCM) is arguably the most mature emerging nonvolatile memory, foreseen for the replacement of the mainstream NOR-Flash memory for the future embedded applications. To allow the design of new PCM-based products, SPICE simulations, thus compact models, are needed. Those models need to be fast, robust and accurate; nowadays, no published model is able to fill all these requirements.The goal of this thesis is to propose a new compact model of PCM, enabling PCM-based circuit design. The model that we have developed is entirely continuous, and is validated on a wide range of voltage, current, time and temperature. Built on physical insights of the device, a thermal runaway in the Poole-Frenkel mechanism is used to model the threshold switching of the amorphous phase. Besides, the introduction of a new variable representing the melted fraction, depending only on the internal temperature, along with a crystallization speed depending on the amorphous fraction, allow the accurate modeling of all the temporal dynamics of the phase transitions. Moreover, an optimized model card extraction flow is proposed following the model validation, relying on a sensibility analysis of the model card parameters and a simple set of electrical characterizations. It enables the adjustment of the model to any process variation, and thus ensures its accuracy for the design modeling at every step of the technology development
Kiouseloglou, Athanasios. "Caractérisation et conception d' architectures basées sur des mémoires à changement de phase". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT128/document.
Texto completoSemiconductor memory has always been an indispensable component of modern electronic systems. The increasing demand for highly scaled memory devices has led to the development of reliable non-volatile memories that are used in computing systems for permanent data storage and are capable of achieving high data rates, with the same or lower power dissipation levels as those of current advanced memory solutions.Among the emerging non-volatile memory technologies, Phase Change Memory (PCM) is the most promising candidate to replace conventional Flash memory technology. PCM offers a wide variety of features, such as fast read and write access, excellent scalability potential, baseline CMOS compatibility and exceptional high-temperature data retention and endurance performances, and can therefore pave the way for applications not only in memory devices, but also in energy demanding, high-performance computer systems. However, some reliability issues still need to be addressed in order for PCM to establish itself as a competitive Flash memory replacement.This work focuses on the study of embedded Phase Change Memory in order to optimize device performance and propose solutions to overcome the key bottlenecks of the technology, targeting high-temperature applications. In order to enhance the reliability of the technology, the stoichiometry of the phase change material was appropriately engineered and dopants were added, resulting in an optimized thermal stability of the device. A decrease in the programming speed of the memory technology was also reported, along with a residual resistivity drift of the low resistance state towards higher resistance values over time.A novel programming technique was introduced, thanks to which the programming speed of the devices was improved and, at the same time, the resistance drift phenomenon could be successfully addressed. Moreover, an algorithm for programming PCM devices to multiple bits per cell using a single-pulse procedure was also presented. A pulse generator dedicated to provide the desired voltage pulses at its output was designed and experimentally tested, fitting the programming demands of a wide variety of materials under study and enabling accurate programming targeting the performance optimization of the technology
Chahine, Rebecca. "Ingénierie aux échelles nanométriques de matériaux chalcogénures à changement de phase pour les mémoires à changement de phase du futur". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY058.
Texto completoIn terms of performance, cost and functional speed, phase-change memories are playing a key role in data storage technologies. Leveraging the properties of some chalcogenide materials, phase-change materials (PCMs) present unique features, mainly: fast and reversible switching between amorphous and crystalline states with significant optical and electrical contrasts between the both states. However, for an improved performance, the elevated power consumption due to the high programming current must be reduced, and the crystallization temperature also has to be increased. In this context, we have developed new multilayer systems of [GeTe/C]n and [Ge2Sb2Te5/C]n. The aim is to obtain, in a controlled and reproducible manner, a thin layer of nanostructured PCM with dimensions less than 10 nm. The multilayers were produced by the magnetron sputtering deposition technique in a 200 mm industrial equipment with a multi-cathode chamber. The multilayers are amorphous after deposition. Ion beam techniques permitted to check periodicity and composition of the multilayers. The sheet resistance and reflectivity as a function of temperature were measured in situ. The crystallization temperature of PCM in the multilayer structure increases and is dependent on the thickness of the PCM layer and that of the carbon films. The kinetics and magnitude of the amorphous-crystal transition of PCM in the multilayers are also significantly affected. The impact of the multilayer structure on the crystallization of GeTe versus Ge2Sb2Te5 is then compared and discussed with respect to their crystallization mechanism. We show that the initially amorphous multilayer structure is retained even after PCM crystallization during an annealing that is identical to the one used for the manufacture of memory devices (300 °C for 15 min). Thus, it is possible to obtain nanocrystalline grains of PCM in amorphous C on the order of 4 nm vertically and 20-30 nm in the layer plane. These results are compared with the microstructure of C-doped GeTe and Ge2Sb2Te5 films. Finally, by using X-ray diffraction measurements in the laboratory and by in situ experiments at the SOLEIL synchrotron, we were able to follow the evolution of the structure of these multilayers during annealing. For example, we reported that a local percolation effect of the GeTe grains between the layers of C occurs above a certain temperature
Garbin, Daniele. "Etude de la variabilité des technologies PCM et OxRAM pour leur utilisation en tant que synapses dans les systèmes neuromorphiques". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT133/document.
Texto completoThe human brain is made of a large number of interconnected neural networks which are composed of neurons and synapses. With a low power consumption of only few Watts, the human brain is able to perform computational tasks that are out of reach for today’s computers, which are based on the Von Neumann architecture. Neuromorphic hardware design, taking inspiration from the human brain, aims to implement the next generation, non-Von Neumann computing systems. In this thesis, emerging non-volatile memory devices, specifically Phase-Change Memory (PCM) and Oxide-based resistive memory (OxRAM) devices, are studied as artificial synapses in neuromorphic systems. The use of PCM devices as binary probabilistic synapses is studied for complex visual pattern extraction applications, evaluating the impact of the PCM programming conditions on the system-level power consumption.A programming strategy is proposed to mitigate the impact of PCM resistance drift. It is shown that, using scaled devices, it is possible to reduce the synaptic power consumption. The OxRAM resistance variability is evaluated experimentally through electrical characterization, gathering statistics on both single memory cells and at array level. A model that allows to reproduce OxRAM variability from low to high resistance state is developed. An OxRAM-based convolutional neural network architecture is then proposed on the basis of this experimental work. By implementing the computation of convolution directly in memory, the Von Neumann bottleneck is avoided. Robustness to OxRAM variability is demonstrated with complex visual pattern recognition tasks such as handwritten characters and traffic signs recognition
Bayle, Raphaël. "Simulation des mécanismes de changement de phase dans des mémoires PCM avec la méthode multi-champ de phase". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX035.
Texto completoPhase change memories (PCM) exploit the variation of resistance of a small volume of phase change material: the binary information is coded through the amorphous or crystalline phase of the material. The phase change is induced by an electrical current, which heats the material by the Joule effect. Because of its fast and congruent crystallization, theGe2Sb2Te5 alloy is widely used for PCM. Nevertheless, to get a better reliability at high temperatures, which is required e.g. for automotive applications, STMicroelectronics uses a Ge-rich GeSbTe alloy. In this alloy, chemical segregation and appearance of a new crystalline phase occur during crystallization. The distribution of phases and alloy components are critical for the proper functioning of the memory cell; thus, predictive simulations would be extremely useful. Phase field models are used for tracking interfaces between areas occupied by different phases. In this work, a multi-phase field model allowing simulating the distribution of phases and species in Ge-rich GeSbTe has been developed. The parameters of the model have been determined using available data on this alloy. Two types of simulations have been carried out, firstly to describe crystallization during annealing of initially amorphous deposited thin layer; secondly to follow the evolution of phase distribution during memory operation using temperature fields that are typical for those operations. Comparisons between simulations and experiments show that they both exhibit the same features
Navarro, Gabriele. "Analyse de la fiabilité de mémoires à changement de phase embarquées basées sur des matériaux innovants". Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01061792.
Texto completoGasquez, Julien. "Conception de véhicules de tests pour l’étude de mémoires non-volatiles émergentes embarquées". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0419.
Texto completoPhase change memory (PCM) is part of the strategy to develop non-volatiles memories embedded in advanced technology nodes (sub 28nm). Indeed, Flash-NOR memory is becoming more and more expensive to integrate in technologies with high permittivity dielectrics and metallic gates. The main objective of this thesis is therefore to realize tests vehicles in order to study an innovative PCM + OTS memory point and to propose solutions to fill its gaps and limitations according to the envisaged applications. The study is based on two different technologies: HCMOS9A and P28FDSOI. The first one is used as support for the development of a technological validation vehicle of the OTS+PCM memory point. The second one is used to demonstrate the surface obtained with an aggressive sizing of the memory point. Finally, an optimized readout circuit for this memory point has been realized allowing the compensation of leakage currents as well as the regulation of the bias voltages of the matrix during the reading
Suri, Manan. "Technologies émergentes de mémoire résistive pour les systèmes et application neuromorphique". Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00935190.
Texto completoCoué, Martin. "Caractérisation électrique et étude TEM des problèmes de fiabilité dans les mémoires à changement de phase enrichis en germanium". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT018/document.
Texto completoIn this thesis we provide a detailed study of the mechanisms responsible for data loss in Ge-rich Ge2Sb2Te5 Phase-Change Memories, namely resistance drift over time and recrystallization of the amorphous phase. The context of this work is first presented with a rapid overview of the semiconductor memory market and a comparison of emerging non-volatile memories. The working principles of PRAM technology are introduced, together with its advantages, its drawbacks, and the physics governing the crystallization process in phase-change materials, before describing the reliability issues in which we are interested.A full electrical characterization of devices integrating germanium-enriched GST alloys is then proposed, starting with the characterization of the materials used in our PCM cells and introducing the benefits of Ge-rich GST alloys over standard GST. The electrical performances of devices integrating those materials are analyzed, with a statistical study of the SET & RESET characteristics, programming window, endurance and crystallization speed. We then focus on the main topic of this thesis by analyzing the resistance drift of the SET state of our Ge-rich devices, as well as the retention performances of the RESET state.In the last part, we investigate on the physical mechanisms involved in these phenomena by providing a detailed study of the cells' structure, thanks to Transmission Electron Microscopy (TEM). The experimental conditions and setups are described before presenting the results which allowed us to go deeper into the comprehension of the resistance drift and the recrystallization of the amorphous phase in Ge-rich devices. A discussion is finally proposed, linking the results of the electrical characterizations with the TEM analyses, leading to new perspectives for the optimization of PRAM devices
Hariri, Ahmad. "Etude de commutateurs hyperfréquences bistables à base des matériaux à changement de phase (PCM)". Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0013/document.
Texto completoThe work presented in this manuscript focuses on the design, simulation and realization of new microwave switches structures based on the integration of thin layers of innovative functional materials such as phase change materials (PCM) and phase transition materials. (PTM). The operating principle of these components is based on the change of resistivity present by these materials. We exploited the reversible resistivity change of GeTe of phase change materials family between the two states: amorphous with high resistivity and crystalline with low resistivity to realize a new structure of SPST switch. Then, we have integrated this switch structure on a new structure of DPDT (Double Port Double Throw) switch matrix based on phase change materials for application in satellite payload. We have used the insulatingmetal transition presented by the vanadium dioxide (VO2) of phase transition materials family to realize a new two terminals simple switch structure on a very wide frequency band (100 MHz–220 GHz)
Le, Gall Nicolas. "Etude et optimisation de composants radiofréquences à base de matériaux à changement de phase". Electronic Thesis or Diss., Limoges, 2023. http://www.theses.fr/2023LIMO0096.
Texto completoRadiofrequency devices are essential components in innovative telecommunication technologies. For example, RF switches allow electric signals to pass through different parts of a circuit. Different technologies of RF switches exist, like transistors, electromechanical relays or RF MEMS. The main benefit of the implementation of phase change materials is the development of miniaturized, bi-stable, low-loss components. These materials have recently been integrated in High Frequency circuits and have to be well studied and understood. This thesis also presents optimization and development of new devices, like reconfigurable capacitors. This thesis presents investigation and optimization of radiofrequency devices based on phase-change materials. First, RF switches based on phase-change materials are presented and compared to existing technologies. Then, fabrication process and switches geometry are optimized, before presenting reconfigurable capacitors. Those capacitors have been developed from RF switches. Eventually, first results on reliability are presented
Balandraud, Xavier. "Changement de phase et changements d'échelle dans les alliages à mémoire de forme". Montpellier 2, 2000. http://www.theses.fr/2000MON20013.
Texto completoMennai, Amine. "Conception et réalisation de commutateurs RF à base de matériaux à transition de phase (PTM) et à changement de phase (PCM)". Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0035/document.
Texto completoThis research work focuses on the design and realization of RF switches based on the integration of new materials such as vanadium dioxide (VO2), Ge2Sb2Te5 (GST) and GeTe chalcogenides alloys. The operating principle of these devices is based on the resistivity change presented by these materials. VO2 exhibits a Metal-Insulator transition (MIT) around 68°C for which the material changes from an insulating state (high resistivity) to a metallic one (low resistivity). The MIT transition can be triggered in different ways (thermally, electrically and optically) with low switching time. GST and GeTe alloys have the particularity to be reversibly switched between a high resistive-amorphous state to low resistive-crystalline state, under a specific heat treatment. Thanks to the non-volatile resistivity change presented by these materials, GST/GeTe-based switches are able to operate in bistable mode. The fabricated devices exhibit good electrical performances (insertion loss and isolation) over a broadband. The aim of our work is to propose an alternative solution to conventional technologies (semiconductors and RF-MEMS), to design RF switches that can be used afterward in the design of reconfigurable devices (filters, antennas)
Martinelli, Matthieu. "Stockage d’énergie thermique par changement de phase – Application aux réseaux de chaleur". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI084/document.
Texto completoThis study is about a shell and tubes latent heat thermal energy storage system. This system is expected to be integrated in a district heating network substation. Heat transfers inside the PCM as well as convection flow regime inside the heat transfer fluid are investigated.A first experimental study aims at demonstrating the necessity of internal insert inside the tubes in order to avoid mixed convection flow regime. Two highly finned tubes as well as two inserts are tested. Inserts are either cylindrical or helical. Better thermal performances are obtained with the helical one. Besides, it is shown that free convection, between the fins is negligible. Effective thermal conductivities are estimated with an experimental and analytical approach at 7.4 and 10.9 W/m/K for the 7 fpi and the 10 fpi tube.A second test campaign is carried out with metallic foams. The first one is stochastic and in copper while the second one is regular and in alumina. Effective thermal conductivities are around 13.4 and 39.4 W/m/K respectively. The copper foam heat exchanger is shown to be better than a copper finned tube in terms of stored energy and thermal power, whereas only half the mass of the fins is used in the foam.Eventually a CFD numerical model is experimentally validated. This model shows that free convection inside the PCM is negligible on the overall thermal performances even though it modifies the solid/liquid interface shape locally
Trigui, Abdelwaheb. "Analyse du transfert de chaleur dans les matériaux composites à changement de phase (MCP)". Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1040.
Texto completoPas de résumé en anglais
Soupart-Caron, Adèle. "Stockage de chaleur dans les matériaux à changement de phase". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI078/document.
Texto completoThis PhD thesis deals with the understanding of the heat transfer mechanisms and with the development of thermal energy storage system for the industrial waste heat recovery application. The use of Phase Change Materials (PCM) is attractive for its high storage density and its possibility to deliver heat at constant temperature. However, the PCM low thermal conductivity leads to develop heat transfer improvement methods, such as heat exchangers with increased heat transfer surface. The goal is to characterize the behavior of such heat exchangers An experimental study, where four several heat exchangers have been tested with different orientations (horizontal/vertical) and injection types (upward/downward), highlighted the impact of natural convection during the melting process and the volume contraction one during the solidification. These results have been validated through a 3D numerical model. A performance comparison method based on an energy calculation through an experimental mesh is proposed and enables to select a heat exchanger on criteria such as the storage density, the characteristic time and the cost. Three PCM, adapted to our application, have been tested at the intended temperature (100-200 °C) by integrating them into a storage system made of a stainless steel tube with aluminum circular fins. Their ability to resist to repeated cycles has been assessed and their behavior has been compared. The salts mixture, H105 (Tmelting = 122 °C), is not selected for the application because of it low storage density (≈ 56 kWh/m3) and its large melting area. The sebacic acid (Tmelting = 132 °C) has a repeatable behavior with cycles and a higher storage density (≈ 66 kWh/m3) and is appropriate as storage material. The sugar alcohol, erythritol (Tmelting = 118 °C), has good thermo-physical properties (128 kWh/m3) but the crystallization control is a key point to use it as a PCM
Belot, Malik. "Stockage de la chaleur dans un lit de particules à changement de phase". Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0065.
Texto completoThis work intends to characterize heat transfer in fluid-particle flows, specifically when phase change occurs inside the particles. The proposed model takes into account the external heat resistance (heat transfer at the particle-fluid interface) and the internal heat resistance (conduction inside and at the wall of the particle, natural convection in the liquid phase of the particle, phase change). External transfer with the surrounding fluid is described by correlations linking an external Nusselt number to Reynolds and Prandtl numbers related to the surrounding fluid. Internal conduction is calculated thanks to analytical solutions. The influence of natural convection was studied on an isolated sphere for different combinations of Rayleigh and Prandtl numbers. A correlation between an internal Nusselt number, and particle Rayleigh and Prandtl numbers was established using these simulations. This correlation allows calculating the transient evolution of the average temperature of the particle when natural convection occurs. Phase change is taken into account by a Phase Field model averaged over the particle and validated by comparison with experimental and numerical studies from the literature. Finally, the whole model and the effects of the different phenomena it describes are tested on a fixed bed of particles at mesoscopic scale using a Discrete Element Method–Computional Fluids Dynamics (DEM-CFD) model. Internal conduction and natural convection gives similar quantities of total energy stored for the same Biot number, however heat transfer distribution is modified. Phase change greatly reduces the volume of storage. Increasing the Biot number leads to a greater amount of energy stored. Finally, heat transfer greatly depends on porosity distribution
Schick, Vincent. "Caractérisation d’une mémoire à changement de phase : mesure de propriétés thermiques de couches minces à haute température". Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14280/document.
Texto completoThe Phase change Random Access Memories (PRAM), developed by semiconductor industry are based on rapid and reversible change from amorphous to crystalline stable phase of chalcogenide materials. The switching between the amorphous and the crystalline phase leads to change of the electrical resistance of material. The amorphous-to-crystalline transition is performed by heating the memory cell above the glass transition temperature (~130°C). The chalcogenide ternary compound glass Ge2Sb2Te5 (GST-225) is probably the candidate to become the most exploited material in the next generation of mass storage architectures. The Time Domain ThermoReflectance (TDTR) and the Modulated PhotoThermal Radiometry (MPTR) have been implemented to study the thermal properties of constituting element of PRAM deposited as thin layer (~100 nm) on silicon substrate. The thermal diffusivity and the Thermal Boundary Resistance of the PRAM film are retrieved. These parameters are identified using a model of heat transfer based on Fourier’s Law and the thermal impedance formalism. The measurements were performed in function of temperature from 25°C to 400°C. Structural and chemical changes due to the high temperature during the experimentation have been also investigated by using XRD, SEM, TOF-SIMS and ellipsometry techniques. The thermal properties of GST-225, insulator, heating and metallic electrode involved in these kind of storage devices were thus measured at a sub micrometric scale
Laouini, Mariem. "Conception, simulation et mesures de différents circuits reconfigurables utilisant des commutateurs MEMS RF et des commutateurs à matériaux à changement de phase (PCM)". Electronic Thesis or Diss., Limoges, 2023. https://aurore.unilim.fr/theses/nxfile/default/15037a69-5484-4258-a2c0-9a2beb9183c1/blobholder:0/2023LIMO0020.pdf.
Texto completoThis manuscript represents the thesis work that mainly deals with the design of RF MEMS switches for reconfigurable circuits. A solution that solves the problem of trapping phenomenon in the dielectric of the switch has been proposed using Ta/Ta2O5 dielectric. This RF MEMS switch, operating at a frequency of 20 GHz, has showed reliable operation without the occurrence of the dielectric-trapping phenomenon. It also gave a high capacitance value of 350 fF and a high capacitive contrast of seven. These components are then integrated into the design of a reflective type phase shifter using the Lange hybrid coupler. The phase shifter guaranteed a 180° phase shift, low insertion losses as well as good isolation below -23 dB.Other RF MEMS switches, using Au/SiN actuation electrode, are used in the design of a 2-bit and a 3-bit phase shifter. The 2-bit phase shifter demonstrated the ability to have a smooth phase shift of 0°, 96° and 186° with an approximate step size of 90°. The PCM phase change materials switches, designed in our XLIM laboratory, were also tested for the design of a phase shifter. The conceived circuit was able to reach the 180° phase shift with, however, high insertion losses. In the last project, we detailed a design of an LC reconfigurable impedance tuner. This impedance adapter is tested on the WolfSpeed CGH40010F transistor and demonstrated a good matching at the output of the transistor at 5 GH. The design of the tuner and its integration into a PCB card on a FR4 substrate are still, however, a matter of concern
Rigal, Sacha. "Stockage par matériaux à changement de phase de l’énergie thermique rejetée par l’industrie à basse température". Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3003/document.
Texto completoA large amount of energy is rejected by the industry at low temperature level, below a temperature of 200 °C. In order to improve the overall energy efficiency of industrial processes, it is possible to re-use this waste heat. However, this energy recovery is often made difficult because of the time difference between the process step at which the energy is lost and the process step at which this energy could be reused. Combining high energy storage capabilities and a possible energy recovery at constant temperature, thermal storage solution by phase change materials (PCM) is particularly attractive. However, this storage systems implementation faces scientific and technologic obstacles concerning both the storage material and system but also its command system and its integration into industrial processes.This thesis aims to develop a thermal energy storage system using a solid-liquid PCM technology in two temperature ranges: 70-85 °C and 120-155 °C. The first one corresponds to temperatures of heating networks or domestic heating systems, while the second one could directly preheat existing industrial processes. The thesis aims to demonstrate the technical feasibility of the storage system. The purpose is divided into different tasks such as PCMs selection and characterization, PCM implementation in a storage system but also numerical simulation of the storage solution.PCM documented in the literature at those temperature ranges were characterized by Differential Scanning Calorimetry (DSC) in order to determine thermo physical properties on laboratory grade samples. Stearic acid for the 70-85 °C temperature range and sebacic acid for the 120-155 °C temperature range were selected. Deeper differential scanning calorimetry analyses were carried out on those industrial grade materials including material ageing process analyses and their compliance with their respective encapsulation within an experimental test bench.Thermal storage experimental prototype was designed in order to meet the demands simulating the rejects and needs of industrial processes. The test bench is mainly composed of two storage systems : a cylindrical tank, a multitubular exchanger and a thermoregulator used to simulate industrial process functioning. The PCM, while in the multitubular exchanger, fills up the whole volume of the shell whereas the heat transfer fluid flows in tubes. The tank, for its part, contains polyolefin spherical capsules in which the PCM is contained. The tank is crossed by the heat transfer fluid conducting heat exchanges. Those spherical capsules called nodules cannot be exposed to temperatures exceeding 100 °C and are exclusively reserved for the low temperatures range. Thus, stearic acid was confined in nodules so as to fill the storage tank. The sebacic acid was incorporated in the multitubular exchanger shell. Experimental campaigns carried out have demonstrated the feasibility of those storage types
Rakotondrandisa, Aina. "Modélisation et simulation numérique de matériaux à changement de phase". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR051/document.
Texto completoIn this thesis we develop a numerical simulation tool for computing two and three-dimensional liquid-solid phase-change systems involving natural convection. It consists of solving the incompressible Navier-Stokes equations with Boussinesq approximation for thermal effects combined with an enthalpy-porosity method for the phase-change modeling, using a finite elements method with mesh adaptivity. A single-domain approach is applied by solving the same set of equations over the whole domain. A Carman-Kozeny-type penalty term is added to the momentum equation to bring to zero the velocity in the solid phase through an artificial mushy region. Model equations are discretized using Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements are used for the velocity and piecewise linear (P1) for the pressure. The coupled system of equations is integrated in time using a second-order Gear scheme. Non-linearities are treated implicitly and the resulting discrete equations are solved using a Newton algorithm. The numerical method is implemented with the finite elements software FreeFem++ (www.freefem.org), available for all existing operating systems. The programs are written and distributed as an easy-to-use open-source toolbox, allowing the user to code new numerical algorithms for similar problems with phase-change. We present several validations, by simulating classical benchmark cases of increasing difficulty: natural convection of air, melting of a phase-change material, a melting-solidification cycle, a basal melting of a phase-change material, and finally, a water freezing case
Moumni, Ziad. "Sur la modélisation du changement de phase solide : application aux matériaux à mémoire de forme et à l'endommagement fragile partiel". Phd thesis, Ecole Nationale des Ponts et Chaussées, 1995. http://tel.archives-ouvertes.fr/tel-00529370.
Texto completoCappella, Andrea. "Caractérisation thermique à haute température de couches minces pour mémoires à changement de phase depuis l'état solide jusqu'à l'état liquide". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14500/document.
Texto completoThis thesis is devoted to the thermal characterization of molten materials, namely chalcogenide glass-type tellurium alloys, at the micrometer scale. An experimental setup of Photothermal Radiometry (PTR), formerly developed for solid state measurements, has been adapted for this purpose. Using MOCVD technique, a random lattice of sub-micrometric tellurium alloy structures is grown on a thermally oxidized silicon substrate. These structures are then embedded in a protective layer (silica or alumina) to prevent evaporation during melting. Measurements are then performed from room temperature up to 650°C. SEM and XRD measurements performed after annealing show that these samples withstand thermal stress only up to 300°C. The coating’s thermal boundary resistance is estimated by a heat transfer model based on the thermal impedance formalism. Moreover, the thermal conductivity and thermal boundary resistance of thin amorphous alumina by low temperature ALD are measured from the room temperature to 600°C
Gong, Wei. "Heat storage of PCM inside a transparent building brick : Experimental study and LBM simulation on GPU". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0063/document.
Texto completoThe domestic and commercial buildings are currently becoming the major sector that consumes the biggest share of the energy in many countries, for example in France. Various researches have been carried out in order to reduce the energy consumption and increase the thermal comfort of builds. Among all the possible approaches, the latent heat storage technology distinguishes itself because of its excellent heat storage ability which can be used to efficiently reduce the discrepancy between the energy consumption and supply. In one of our project, we intend to integrate a type of transparent brick filled with phase change material (PCM) into the buildings' wall design. The PCM inside the brick undergoes the solid-liquid phase change. This dissertation addresses the important issues of the melting process inside the brick. In this dissertation, a non-intrusive experimental method was proposed to improve the existing experiment technique. The particle image velocimetry (PIV) and the laser-induced fluorescence (LIF) were coupled to investigate the natural convection and the temperature distribution. Because there was no thermocouple installed inside the brick, the melting process was thus considered to be less impacted. The results showed that this experimental design has a promising future, yet still needs to be improved. Two sets of efficient numerical simulations were also presented in this dissertation. The simulations were based on the thermal lattice Boltzmann method (TLBM), where the natural convection got solved by the LBM and the temperature equation was solved by the finite difference scheme. The enthalpy method was employed to simulate the phase change. Both the 2-dimensional and 3-dimensional configurations were successfully simulated. Moreover, the simulation programs were specifically developed - using the C language - to be run on the graphic processing unit (GPU), in order to increase the simulation efficiency. The simulation results demonstrated a good agreement with our experimental results and the published analytical results
Beust, Clément. "Modélisation multi-échelles d’un système de stockage thermique de vapeur par Matériau à Changement de Phase (MCP)". Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3029.
Texto completoIn an industrial process where steam is employed as a heat carrier, the integration of a steam storage solution allows to make the production of steam independent of its usage. Steam storage technologies can be used to decrease the energy consumption of the process, or to valorize waste heat from steam flows. Steam storage is also crucial for thermal solar power plants with direct steam generation. This work presents a model of a shell-and-tube steam storage system using Phase Change Material (PCM). These systems store the thermal energy of steam through the latent heat of the solid-liquid phase change transition of a material called PCM. The heat transfers in a storage module are often influenced by the natural convection flow of the liquid PCM during fusion and solidification. Predicting the thermal performances of a module can only be done by simulating this flow with a Computational Fluid Dynamics (CFD) numerical model with a fine mesh, whose computational times are too high for engineering needs. The goal of this work is to develop a model for the design and the performance prediction of a storage module, which takes into account the fine physical phenomena while having reasonable computational times. A multi-scale modelling approach is adopted: both a fine CFD model of the PCM and a system model of a storage module with a coarser mesh are employed.The CFD model is based on the enthalpy-porosity approach, which allows 3D simulation of solid-liquid phase change, and takes into account the movements of the liquid PCM. The sensitivity of the model to several parameters which characterize the phase change is studied, on two case studies where the natural convection flows has different amplitudes. The crossed influences of the parameters are identified. The comparison to experimental results allows to emit good practices for the use of the model. The values of the latent heat and of the temperature interval where the phase change takes place appear to be fundamental for both cases; this shows that the precision of the PCM characterization is very important for the numerical simulation of solid-liquid phase change. The mushy zone constant, which governs the damping of the liquid flow in the vicinity of the fusion or solidification front, has a different effect on the results and a different optimal value depending on the case study. Therefore, it is recommended to fit the value of this constant on experimental data, whenever such data are available.The system model represents the 1D liquid water / steam two-phase flow in the tubes of a module, and the heat transfers and the phase change in the PCM outside the tubes. The PCM is represented by a purely conductive model with an equivalent conductivity. A prototype storage module with segmented fins, installed at CEA Grenoble, is simulated with the CFD model; sodium nitrate is used as PCM (phase change temperature: 305°C). A 1D law for the heat transfer between the tube and the PCM is obtained from the CFD results; this law takes into account the convective heat transfer, and the heat transfer enhancement by the fins and the conductive inserts that are disposed in the PCM. An equivalent conductivity of the PCM in the system model is computed from the law. The modelling methodology is validated on charge tests from the prototype module (PCM fusion and steam condensation). The system model correctly reproduces the transient heat transfer rate to the PCM that the CFD predicts and the one measured experimentally, while allowing 10 to 90 times shorter computational times
Wu, Jing. "Modélisation dynamique d’un système couplé pompe à chaleur – stockage thermique par matériaux à changement de phase : approche systémique et validation expérimentale". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10167/document.
Texto completoIn the area of buildings refrigeration, the use of thermal energy storage coupled with heat pump is a significant way for reducing the operating costs and optimizing the design of equipment. A prototype of refrigeration-PCM (Phase Change Material) energy storage system is built and implemented within the framework of the project ACLIRSYS (Advanced Control for Low Inertia Refrigeration Systems), funded by the French National Research Agency. The objective of my PhD thesis is to propose a dynamical physical model for the complete system. Within the evaporator and condenser of the heat pump, the refrigerant can be liquid, vapor or mixture of both, while the storage media can be solid, liquid or a mixture of both. Therefore, it is necessary to consider the discrete events associated to phase changes in order to solve the energy and mass balances in different configurations. In this work, static models are used for the compressor and the expansion valve of the heat pump. The heat exchangers of the heat pump and the storage models are based on a representation of the fluid flows by a cascade of Continuous Stirred Tank Reactors (CSTRs). In order to assure the continuity of system evolution, the switching mechanism between different configurations is established. This switching is performed by matrix operations, which permit to achieve a global and very compact representation of the system. The thermodynamic properties of the refrigerant and their partial derivatives are analytically determined by using an equation of state. Two versions of the model for the storage are proposed. A simplified version where the supercooling is assumed to take place at a constant temperature and a more detailed version based on the population balance equations. Experimental data from the prototype has been used to validate the developed model. Experiments in transient states were performed by varying the operating conditions. These date relate to the functioning of the heat pump alone, the storage alone and the coupled system. A very good agreement between the numerical results and experimental data was obtained
Seck, Cheikh. "Analyse et modélisation du comportement thermique d'un système de préchauffage d'air neuf pour l'habitat, intégrant un matériau à changement de phase". Thesis, Artois, 2010. http://www.theses.fr/2010ARTO0204.
Texto completoThe objective of this thesis is to study an integrated energy system in the building envelope for fresh air preheating. The originality of the work is that the wall is equipped with phase-change material (MCP) packed into briquettes. The main role ofthe wall is to preheat the fresh air (coming from outside) by destocking the solar energy captured in sunny periods.Our study consists of two phases, an experimental phase and a numerical one. The experimental phase involves a series of tests that allow studying the thermal behaviour of the system under thermal stress. These tests were done in laboratory through a prototype of the wall which is instrumented and installed between two airconditioned cells.The purpose of the numerical phase is to develop a one-dimensional model to simulate the thermal behaviour of the wall and especially that of MCP. This model has been validated by comparing numerical results with those obtained experimentally. To model the phase changing we used the thermophysical parameters of the same material obtained by experimental characterization conducted in our laboratory.We used a variable capacity method whose principle is to vary the heat capacity as a function of temperature in order to simulate the phase changing of the wall. The last part of the numerical work is the exploitation of the model, the aim is to determine the optimal configuration of the wall that provides maximum energy savings. Dynamic simulation of the system was performed using the TRNSYS. This one is equipped with weather files which allow carrying out heat balances and the estimation of the system efficiency for various climates
Canvel, Yann. "Etude du procédé de gravure de l'alliage Ge-Sb-Te pour les mémoires à changement de phase". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY017.
Texto completoMemories have gained a lot of influence through these last years and are present in all electronic systems used in our daily life. To address the limitations of the traditional memory technologies, many industries are dedicating their researches to the development of the Phase-Change Memories (PCM). This emerging technology mainly uses the properties of a Ge-Sb-Te based-chalcogenide alloy (GST). The memory characteristics may change according to the GST chemical composition. This is a critical point to carefully consider for the manufacturing process of the component. Indeed, it is crucial to preserve as much as possible the GST integrity all along the patterning steps of the memory cell in order to preserve the device performances.This thesis work aims at understanding the material – environment interactions likely to impact the GST chemical stability and propose some improvements to the processes that are detrimental for the material. Firstly, we have focused on the plasma etching effects on the GST alloy through the comparative study of three halogen chemistries, HBr, Cl2 et CF4. Thanks to the complementary results from XPS, PP-TOFMS and AFM measurements, the HBr chemistry was identified as the best etching strategy for limiting damages at the GST surface. Secondly, we have investigated the GST interactions with the different environments implemented during the subsequent fabrication processes. The GST exposition to an oxidizing environment (O2 based-plasma or air) induces a critical oxidation damaging the phase-change properties. Besides, the chemical treatment used to clean the PCM sidewalls removes selectively the GST oxide and, consequently, can modify the memory cell morphology. To prevent these effects, several plasma solutions are suggested in order to maintain the chemical stability of the GST material during the PCM patterning process. In particular, knowing the benefits of a CH4 plasma, we propose to either integrate it into a passivating etching process or to use it as a precursor promoting a protection layer. The development of an alternative etching chemistry in H2-N2-Ar has also been discussed and opens an interesting perspective
Bouzid, Assil. "First-principles investigation of binary and ternary amorphous chalcogenide systems". Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE029/document.
Texto completoThis thesis reflects efforts toward an accurate understanding of the atomic scale structure of chalcogenide glasses. These compounds have an impact on electronics, optoelectronics and memory devices. I resorted to the most advanced first-principles molecular dynamics simulations such as the standard Car-Parrinello method as well as its second generation version. In the first part of this thesis we provide a detailed study of the topological changes undergone under pressure by glassy GeSe2 and by glassy GeSe4. Structural transition and bonding features are described and compared to the results of neutron and X-ray diffraction experiments. Furthermore, in the case of glassy GeTe4 we demonstrated that the inclusion of van der Waals forces leads to substantial improvements in the description of the structure. In the second part of this thesis, we established the atomic-scale organization of a promising candidate for phase change memory applications, glassy Ge4Sb6Te3
Osswald, Véronique. "Intensification des transferts dans les procédés de changement de phase des coulis : Application aux hydrates de CO2 pour la réfrigération secondaire". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST015.
Texto completoCold is used in many sectors (food industry, chemicals, medical, transport or housing) and contributes up to 20% of the French electricity consumption. CO2 hydrate slurries can be used as secondary refrigeration fluids to reduce the environmental impact of refrigeration systems. These fluids have a high energy density thanks to their high latent heat of phase change (500 kJ.kg-1hydrates) and their phase change temperature can be adjusted over a wide range (273 - 298 K). Hydrates are ice-like crystals composed of water and containing guest molecules. Understanding and controlling hydrate crystallization kinetics are still scientific keys. One limitation is linked to the slow kinetics and the other to the rapid trend for hydrates to agglomerate during flow. This thesis investigates different methods for formation kinetics characterizing. Based on a mass and heat balance approach and evaluated during crystallization, the key parameters were highlighted to enhance transfers. An original device was designed to measure heat transfer during crystallization. A parametric study of the effect of CO2 amount inside the reactor, the stirrer type and the stirring speed was carried out in order to identify the most suitable enhancement methods. Finally, for the intensification parameters selected, specific measurements of the CO2 mass transfer coefficient from the vapour phase to the liquid phase, kLa were carried out
Aoukar, Manuela. "Dépôt de matériaux à changement de phase par PE-MOCVD à injection liquide pulsée pour des applications mémoires PCRAM". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT075/document.
Texto completoPhase change random access memories PCRAM are based on the fast and reversible switch between the high resistive amorphous state and the low resistive crystalline state of a phase change material (PCM). These memories are considered to be one of the most promising candidates for the next generation of non volatile memories thanks to their unique set of features such as fast programming speed, multi-level storage capability, good endurance and high scalability. However, high power consumption during the RESET operation (IRESET) is the main challenge that PCRAM has to face in order to explode the non volatile memory market. In this context, it has been demonstrated that by integrating the phase change material (PCM) in high aspect ratio lithographic structures, the heating efficiency is improved leading to a reduced reset current. In order to fill such confined structures with the phase change material, a highly conformal deposition process is required. Therefore, a pulsed liquid injection Plasma Enhanced-Metal Organic Chemical Vapor Deposition process (PE-MOCVD) was developed in this work. First, amorphous and homogeneous GeTe films were deposited using the organometallic precursors TDMAGe and DIPTe as Ge and Te precursors. XPS measurements revealed a stoichiometric composition of GeTe but with high carbon contamination. Thus, one of the objectives of this work was to reduce the carbon contamination and to optimize the phase change properties of the deposited PCMs. The effect of deposition parameters such as plasma power, pressure and gas rate on the carbon contamination is then presented. By tuning and optimizing deposition parameters, GeTe films with carbon level as low at 2 at. % were obtained. Thereafter, homogeneous films of GeSbTe were deposited by injecting simultaneously the organometallic precursors TDMAGe, TDMASb and DiPTe in the plasma. A wide range of compositions was obtained by varying the injection and deposition operating parameters. Indeed, one of the main advantages of this process is the ability of varying films composition, which results in varying phase change characteristics of the deposited PCM. The impact of plasma parameters on the conformity of the process was also studied. It was shown that by adding a low frequency power component to the radio frequency power of the plasma, structures with high aspect ratio were successfully filled with the phase change material. Finally, electrical characterization of PCRAM test devices integrating phase change materials deposited by PE-MOCVD as active material have presented electrical properties similar to the ones obtained for materials deposited by conventional physical vapor deposition (PVD) process
Souayfane, Farah. "Modèle simplifié de changement de phase en présence de convection et rayonnement : application à un mur translucide associant superisolation et stockage d'énergie thermiques". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4043/document.
Texto completoThis thesis aims to study the exploitation of solar radiation thanks to a new concept of passive sensor wall. In this context, the thermal behavior of a novel semi-transparent solar wall has been studied. The wall is composed of glazing, silica aerogel (TIM) and glass bricks filled with fatty acids (PCM). This wall provides storage and restitution of heat, thermal-acoustic insulation and daylighting. The thermal performance of the TIM-PCM wall is tested in a full-sized test cell located in Sophia, PERSEE center. In winter, particularly in sunny cold days, the PCM absorbs solar radiation, melts, and then releases the stored heat to the building at night. During summer, overheating is encountered, the PCM remains in its liquid state and is unable to release the stored heat. A simplified model for PCM melting in presence of natural convection and radiation is developed and validated using a CFD model, and benchmark solutions. Then, a numerical model describing the heat transfer mechanisms through the wall is developed. This model is linked to TRNSYS to assess the thermal performance of the whole building. The MATLAB-TRNSYS model is then validated experimentally. The thermal behavior of the wall is tested under different climates, and passive solutions are proposed to ensure thermal comfort in summer. Finally, the validated model is used to study the annual thermal behavior of a building integrating TIM-PCM wall and an economic study is conducted. These studies confirm the interest of the wall vis-à-vis the improvement of energy performance of the building. The economic feasibility of applying the TIM-PCM wall depends mainly on climate, energy costs, and investment cost
Djamai, Zakaria Ilyes. "Contribution à la caractérisation multi-échelle de composites textile mortier à inertie thermique renforcée par des matériaux à changement de phase (composite MCP-TRC) : application au bâtiment". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEE006.
Texto completoThe building sector has a strong potential for improvement in terms of thermal performance and attenuation of the ecological footprint. A good design of the envelope as well as the structure of the building is fully integrated into these objectives and can contribute effectively to the reduction of energy consumption. This is accompanied by a relevant choice of materials and constructive systems composing the envelope and the structure of the buildingThe research work presented in this thesis is fully integrated in this context and aims at the development of an innovative composite resulting from the association of a modified cementitious matrix by the addition of phase change materials (PCM) and a textile reinforcement, the resulting composite will commonly be called 'MCP-TRC'.A detailed study of the mechanical and thermal behaviour of the 'PCM-TRC' composite was carried out. A particular interest was brought during the work presented to the understanding of the interactions between PCM and cement matrix and between cement matrix modified by the addition of PCM and textile reinforcement. These interactions govern the mechanical and thermal behaviour of PCM-TRC composites.Two innovative concepts (lightweight slabs and PCM-TRC sandwich panels) integrating the PCM-TRC composites were proposed. The mechanical and thermal performances of the two concepts were evaluated. The results obtained are very encouraging and promote the emergence of this type of composites in the building industry
Bykalyuk, Anna. "Contribution à l'étude des échanges convectifs à l'interface fluide paroi en présence de matériaux à changement de phase : Application au bâtiment". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0132/document.
Texto completoRecent experimental studies have shown that the usual values of the convective heat transfer coefficient h are no longer valid in the presence of phase change materials. Three separate models were developed. Initially a model 1 which treats the fluid-wall (constant temperature) interaction in steady laminar flow has been developed and validated. Then, the wall with heat capacity (model 2) subjected to an air temperature ramp were studied. Finally, a third model (3) has been developed which treats the interaction fluid-wall which contains a phase change material. The results show local peaks of heat flow over time. This fact reflects the phase change inside the wall. Moreover, the curves of the convective heat transfer coefficient indicate the dependence of the coefficient h to the wall’s energy storage capacity. Therefore, the presence of the phase change materials within a wall effect and changes the shape of the thermal boundary layer
Nguyen, Huu tan. "Thermal Characterization of In-Sb-Te thin films for Phase Change Memory Application". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0112/document.
Texto completoPhase change memories (PCM) are typically based on compounds of the Ge-Sb-Te (GST) ternary system. Nevertheless, a major drawback of PCM devices is the failure to fulfill automotive-level or military-grade requirements (125°C continuous operation), due to the low crystallization temperature of GST. To overcome this limitation, alloys belonging to the In-Sb-Te (IST) system have been proposed, which have demonstrated high crystallization temperature, and fast switching. Thermal properties of the chalcogenide alloy and of its interfaces within the PCM cell can influence the programming current, reliability and optimized scaling of PCM devices. The two methods, namely: 3ω and Modulated Photothermal Radiometry (MPTR) technique was implemented to measure the thermal conductivity of IST thin films as well as the thermal boundary resistance at the interface with other surrounding materials (a metal and a dielectric). The experiment was carried outin situ from room temperature up to 550oC in order to investigate the intrinsic thermal properties at different temperatures and the significant structural rearrangement upon the phase transition.The results obtained from the two thermal characterization techniques demonstrate that the thermal conductivity of IST decreases when increasing the Te content. Increasing the Te content could thus lead to a more thermally resistive alloy, which is expected to bring the advantage of a more confined heat flow and limiting the thermal cross-talk in the phase change memory device
Ortega, Del Rosario Maria de los Ángeles. "Système de stockage et transfert d'énergie par chaleur latente adaptable au rafraîchissement d’air en bâtiments : conception et analyse thermique". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0197/document.
Texto completoThe present work aims to design and study an air-PCM heat exchanger unit as a passive solution for thermal comfort assessment in buildings during summertime, providing tools to ease the design and building integration. The PCM present a large storage capacity per volume unit where by, they can contribute to the reduction of the energy consumption related to cooling applications. Although, theyshow some drawbacks, as a low thermal conductivity in commercial PCM, so a wellthought design of these kind of systems is necessary to achieve adequate thermal performances.The first part of this thesis surveys the existing systems through a literature review,highlighting the geometry relation with the physics and thermal performance. This search provided the bases for the development of an air-PCM unit design, following a problem-solving methodology developed by the I2M laboratory. A keyword matrix was obtained from the physical phenomena and functional analysis of the unit. From this matrix, the patents analysis provided inspiration for the design resulting in a tubebundle air-PCM heat exchanger with vertical tubes aligned perpendicular to the airflow.The development of design and integration in buildings tools was sought through a modeling that can accurately predict the thermal performance of the system.Simplified models are preferred for this task. Nevertheless, they can under predict the actual performance if the physical phenomena involved is not properly accounted. Then, local and global experimental approaches were used to achieve anunderstanding of the physics associated with charging and discharging cycles in theunit. For this, a test bench was installed, measuring temperature and airflow underdifferent in let conditions, accompanied by a visual tracking through digital images.Image and data processing were used to obtain thermal performance indicators and equivalent correlations using known dimensionless numbers for convective conductive heat transfer mechanisms in the PCM.These findings allowed the development of thermal models based on energy balances, that accounted the complexity of phenomena involved in the unit for performance prediction. Finally, the thermal performance of the system was tested intwo buildings applications: as a mobile unit in a PEH house in Gradignan and as anactive façade in a building in Talence
El presente trabajo tiene como objetivo diseñar y estudiar una unidad intercambiador de calor aire-PCM como presentan una solución pasiva al conforttérmico en edificios durante el verano, proporcionando herramientas para facilitar el diseño y la integración en edificios. Los PCM una gran capacidad de almacenamiento por unidad de volumen, por lo que pueden contribuir a la reducción del consumo de energía relacionado con las aplicaciones de refrigeración. Estos materiales presentan algunos inconvenientes en cual su uso, como una baja conductividad térmica, típica en PCM comerciales, por lo es necesario un diseño que tome en cuenta esta problemática para lograr rendimientos térmicos adecuados. La primera parte de esta tesis examina los sistemas existentes a través de unarevisión de la literatura, destacando la relación de geometría con los fenómenos físicos y el rendimiento térmico. Esta búsqueda proporcionó las bases para el desarrollo de un diseño de unidad aire-PCM, siguiendo una metodología de resolución de problemas desarrollada por el laboratorio I2M. Se obtuvo una matrizde palabras clave a partir de los fenómenos físicos y el análisis funcional de launidad. A partir de esta matriz, el análisis de patentes proporcionó inspiración para el diseño que dio como resultado un intercambiador de calor PCM de aire y haz detubos verticales alineados perpendicularmente al flujo de aire.El desarrollo del diseño y la integración en herramientas de edificios se buscó através de un modelo que pudiese predecir con precisión el rendimiento térmico delsistema. Los modelos simplificados son los preferidos para esta tarea. Sin embargo,su poder de predicción puede verse afectada si los fenómenos físicos involucradosno se contabilizan adecuadamente. Es por ello que se utilizaron enfoques experimentales locales y globales para lograr una comprensión de la física asociadacon los ciclos de carga y descarga en la unidad. Se realizó una instalación de unbanco de pruebas, que permitió mediciones de temperatura y flujo de aire en diferentes condiciones de entrada, acompañado de un seguimiento visual a travésde imágenes digitales. El procesamiento de imágenes y datos se utilizó para obtener indicadores de rendimiento térmico y correlaciones a partir de números adimensionales relacionados con mecanismos de transferencia de calor porconvección y conducción en el PCM.Estos hallazgos permitieron el desarrollo de modelos térmicos para la predicción delrendimiento, basados en balances de energía de cada volumen de control.Finalmente, el rendimiento térmico del sistema se probó en dos aplicaciones deedificios: como una unidad móvil en una casa PEH en Gradignan y dentro de una oficina del laboratorio I2M
Frutos, Dordelly José Carlos. "Active Solar Chimney (ASC) : numerical and experimental study of energy storage and evaporative cooling". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSET008/document.
Texto completoThe current global warming conditions have led nations across the world to commit into energetic sustainability and greenhouse gas emission reduction. Being the third greatest energetic consumer, the building represents a major key towards energy efficiency and global temperature stabilization. Several solutions exist for the accomplishment of these goals, and the works presented throughout this dissertation concerns a particular external building solar-driven component known as solar chimney. This PhD thesis focuses on the experimental and numerical analysis of energy storage devices, in the form of Phase Changing Materials (PCMs), for the optimisation of the performance of this solar technology. The aim of this study is to characterize the impact of Rubitherm RT44 PCM panels on a solar chimney under laboratory and in-situ conditions to carry out a comparison against the classic version. Additionally, a numerical model was developed and tested in the interest of obtaining a numerical tool capable of representing the behaviour of a solar chimney. Finally a bi-objective optimization of the PCM integrated solar chimney numerical model was carried out in order to determine some of the optimal parameters of this type of technology to obtain the highest exiting air flow, all while maintaining a high enough temperature across the chimney to reach the fusion range of the PCMs
Roccamena, Letizia. "Optimization of an innovative thermal energy storage technology at low temperatures when coupled to multi-source energy architectures". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSET010/document.
Texto completoOne of the most promising technics used in building applications for energy efficiency purposes is the thermal energy storage (TES). Despite the thorough research on TES techniques of the last years, the release to market of cost effective technologies is quite recent. The aim of this study is to optimize the energetic behavior of an innovative TES technology consisting on a water/PCM exchanger that is part of the multi-energy production and storage systems of HIKARI, a positive energy district located in Lyon and consisting of three buildings. In order to optimize this innovative technic, a numerical model reproducing the functioning of the reference system was created. In order to make a numerical validation a second numerical model was developed using a different software based on a different numerical method and, once the in situ data obtained from the reference system monitoring, a first experimental validation was obtained. Subsequently, an innovative experimental prototype reproducing the behavior of the reference PCM-Water heat exchanger has been realized, in order to validate and calibrate the numerical model and carry out a large amount of operating scenarios. Once the model numerically and experimentally validated, the optimization of the HIKARI’s cold storage system technology has been obtained using Genetic Algorithms (GAs) finding the best values to allocate to four characteristics of the cold storage system, in order to minimize two predefined objective functions linked to its functioning. This work was supported by the French Agency for Environment and Energy Management (ADEME) and it was part of the project “Optimization of innovative energy storage technologies when coupled to multi-sources energy architectures”, in cooperation with Bouygues immobilier and Manaslu – CMDL
Lomonaco, Adrien. "Stockage d’énergie thermique par matériaux à changements de phase adapté aux centrales solaires thermodynamiques". Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3012/document.
Texto completoThe work presented in this manuscript concerns the development of a latent heat thermal energy storage system adapted to concentrated solar power plant using direct steam generation, and more particularly on the selection and the study of the Phase Change Material (PCM) used in this system. This thesis was performed within the framework of the STARS project (Stockage Thermique Appliqué à l’extension de pRoduction d’énergie Solaire thermodynamique) carried by the consortium of AREVA Renouvelables, Hamon d’Hondt company, CEA institute liten and laboratories IPNO, LPCS and LaTEP. This project is accompanied by ADEME under the énergies décarbonnées des investissements d’avenir program. The first chapter of this manuscript sets up the context of this study by drawing a state of art of different existing CSP technologies and various ways to store energy for this kind of systems. The STARS project is then described. This chapter ends with a description of the thesis objectives. The entire PCM selection process, including identification of materials in literature, definition of various criteria and thermal characterization by differential scanning calorimetry (DSC) of the most relevant candidates, is detailed in chapter II. This work leads to the selection of sodium nitrate by the consortium, an inorganic salt with a suitable melting temperature considering AREVA’s technology and a large storage density. The following work, concerning the thermal stability of the PCM under thermal cycling, is then presented in chapter III. This part includes a bibliographic study allowing to highlight issues related to thermal degradation of the PCM and its behavior regarding to metallic material with which it will have to be in contact (heat exchanger, storage tank). The main consequence of these phenomena is the reduction of sodium nitrate into sodium nitrite, and thus the impact of sodium nitrite fraction on the thermal properties of the PCM was studied. The results of this experimental work shows a significant reduction of the melting temperature and the latent heat as the fraction in sodium nitrite increases. To study the evolution of the PCM composition under real operating situation, a specific device was designed to replicate thermal cycling conditions in the presence of metals. This device was used to analyze the kinetics of reducing sodium nitrate into sodium nitrite. The results show that the changes in composition of the PCM in the project’s operating conditions are negligible, ensuring the stability of its thermal properties during its lifetime. The last chapter is devoted to the improvement of heat transfers within the PCM. Indeed, sodium nitrate has a low thermal conductivity which may limit the power of the heat exchange in the storage system. A state of art of available solutions for the intensification of thermal transfers concerning latent heat storage was done. This study highlighted that the use of composites based on metallic foams constitutes an effective way of improvement. Thus an experimental campaign was conducted to evaluate the performances of such composites, allowing to show the potential of this kind of configuration
Osipian, Remy. "Etude dynamique d'un système de stockage par chaleur latente liquide-solide : application au véhicule électrique". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC052/document.
Texto completoThis study focuses on the development of a heat storage system used to ensure passenger compartment thermal comfort in an electric vehicle. This device, called a thermal battery, is a packed bed latent heat tank filled with phase change materials (PCM). This type of material has the property of storing large amounts of latent heat in small volumes, allowing a very compact system. At the material scale, an investigation on heat transfer dynamics within several PCM was studied. A phenomenological expression which depicts the temporal evolution of the PCM temperature for a solidification phase was suggested. This allows the estimation of the material solidification duration in terms of geometric and thermal characteristics. At the system scale, a thermal battery prototype was set up and the thermal transfer dynamics during the charging and discharging phases were studied. The charging and discharging durations are fitted by power laws in terms of the flow rate; the pressure drops are insignificant. Simultaneously, a numerical model which simulates the dynamic and thermal behavior of a PCM particle fixed bed was developed and validated with the experimental data. It can be used for future prototype sizing and will also serve as a tool to optimize the performance of the battery by setting the control parameters
Bouhal, Tarik. "Solar hot water production and thermal energy storage using phase change materials (PCMs) for solar air-conditioning applications in Morocco". Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3006.
Texto completoThis thesis reports the results of research into the modeling and simulation of a solar air-conditioning system for Morocco in the framework of the project SCPM (Solar Cooling Process in Morocco) funded by IRESEN (Research Institute for Solar Energy and New Energies). The aim is to investigate the factors concerning the optimization of a LiBr-H2O solar absorption chiller under Moroccan conditions. Further, a number of design criteria, which can be used by designers of solar cooling and heating systems, have been established using energy and economic considerations. Accordingly, this thesis covers four aspects. The first overviews the literature survey on solar technologies with a focus on solar cooling systems which reports the relevant processes, summarizes the market status, presents the recent developments of the most promising technologies and describes the main performance indicators figuring in the literature. Moreover, the experimental aspect of the solar air-conditioning installation adopted in the SCPM project was described to identify the important technical characteristics of the installation and the difficulties encountered during the realization of the prototype. The second dimension concerns the technical feasibility of solar air-conditioning system using energy and economic indicators taking into account the combined effects of climates, building categories and cooling demands under Moroccan conditions. The third aspect presents the latent thermal energy storage using Phase Change Materials (PCMs). It concerns the investigation of numerical methods used in the modeling of phase change phenomena and also focuses on PCMs addition in the solar cooling process integrated inside solar storage tank connected to the generator of the absorption chiller to evaluate the possible enhancement in the system efficiency. The fourth aspect of this thesis outlines the technico-economic and sensitivity analysis applied to the development of a combined processes of solar DHW, heating and air-conditioning in Morocco. The overall analysis via a generalization of the results to the national level was carried out in addition to a sensitivity analysis related to the investment in these systems in order to assess the potential of replacing traditional technologies with the solar systems and the possible earnings related to their implementation in Morocco
Arzamendia, Lopez Juan Pablo. "Métholodogie de conception des matériaux architecturés pour le stockage latent dans le domaine du bâtiment". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0060/document.
Texto completoThe use of energy storage systems that exploit latent heat represents a promising solution to erase the heating demand of residential buildings during periods of peak demand. Equipping a building with such components can contribute to the goal of peak shaving in terms of public electricity grid supply. Significant drawbacks, however, are the low thermal conductivity of Phase Change Materials (PCM) that typically constitute such systems,and the requirement for a high rate of discharge. Consequently, the use of so-called architectured materials has been put forward as a means to optimize the effective conductivity of storage materials. Our work is focused upon the development of a methodology to design optimal materials for such systems that meet the criteria of energy storage and energy output. A so-called “top-down metholodogy” was implemented for the present work. This approach includes three scales of interest: building (top), system and material (down). The aim of the building scale analysis is to formulate a set of general design requirements. These are complemented by performance indicators, which are defined at the scale of the system. Finally, at the scale of the material, the architecture of the identified material is elaborated. A numerical simulation tool was developed to determine performance indicators for a latent heat energy storage system comprising of an air/PCM heat exchanger. This model was tested against a benchmark analytical solution and validated though comparison to experimental data. The developed methodology is applied to the specific case of an air/PCM exchanger latent-heat energy storage system. The system is analysed through the study of dimensionless numbers, which provide a set of design indicators for the system. As a result of this stage, the optimal material and functional properties are thus identified. Finally, an architectured material is proposed that would satisfy the design requirements of the storage system. We demonstrate that an arrangement composed of a sandwich of planar layers with nails and PCM can offer the required material properties. Furthermore, in order to meet the desired functional properties, the system design is modified by the addition of fins at the exchange surfaces. With the addition of 20 fins of 3mm thickness attached to the exchange surface of the sandwich panel, the storage system eliminated the heating demand for 2 hours during the period of high daily demand in winter
Vigouroux, Mathieu Pierre. "Mesure de déformation et cristallinité à l'échelle nanométrique par diffraction électronique en mode précession". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY012/document.
Texto completoPrecession electron diffraction (PED) is a recent technique used to minimize acquired diffractionpatterns dynamic effects. The primary intention of this PhD work is to improve PED (PrecessionElectron Diffraction) data analysis and treatment methodologies in order to measure the strain at thenanoscale. The strain measurement is intended to reach a 10-3 strain precision as well as usualmicroscopy techniques like high-resolution imaging. To this end, measurements were made with aJEOL 2010A with a Digistar Nanomegas precession module.The approach developed has been used and tested by measuring the strain in a Si/SiGe multilayeredreference sample with a known Ge Content. Strain measurements reached 1x10-4 sensitivity withexcellent finite element strain simulation agreement. This process has been also applied to measure thestrain in microelectronic InGaAs Quantum Well and an "Ω-gate" experimental transistor devices.The second approach developed has been made to provide a robust means of studying electrontransparent nanomaterial polycrystallinity with precession. Examples of applications of this analysismethod are shown on different devices
Almoric, Jean. "Développement d'un nouvel instrument couplant FIB/SEM UHV et OTOF-SIMS à haute résolution spatiale pour la microélectronique et ses applications". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0368.
Texto completoSecondary Ion Mass Spectrometry (SIMS) is probably the most widely used chemical analysis technique in semiconductor science and metallurgy because of its ultimate sensitivity to all elements, especially the lighter ones. With systems downsizing, high-resolution 3D chemical imaging is becoming a prerequisite for the development of new materials. In this thesis, we report the development and optimization of an innovative SIMS implemented in a scanning electron microscope. The equipment makes it possible to obtain elementary chemical mapping at very high resolution (~25nm). The capacity of the technique is demonstrated with the characterization at the nanometric scale on the one hand of metallic superalloys necessary for the manufacture of aircraft engine parts and on the other hand of chalcogenide alloys used in the latest generation phase change memories developed in microelectronics
Schlosser, Rebeiz Pauline. "Influence des aspects mécaniques et thermiques sur les mécanismes de déformation d'alliages NiTi". Phd thesis, 2008. http://tel.archives-ouvertes.fr/tel-00384405.
Texto completoCe travail de thèse est dédié à l'analyse des mécanismes de déformation des AMF NiTi. Les comportements homogènes et localisés ont été étudiés en fonction des géométries d'échantillons, des types de sollicitations et des conditions d'essais. L'originalité de cette étude est d'utiliser deux méthodes de mesures de champs : (i) la corrélation d'images afin d'obtenir les champs cinématiques et d'observer les localisations de déformation ; (ii) la thermographie infrarouge pour mesurer les champs de température et analyser les phénomènes de changement de phase. Afin d'utiliser ces techniques simultanément, des outils de recalage spatial et temporel des données ainsi que des techniques d'estimation de sources de chaleur ont été développés. Lors d'essais superélastiques, cette étude a permis d'une part de mettre en évidence la présence de changement(s) de phase homogène en début de charge et de décharge, d'autre part de caractériser de manière quantitative les différentes morphologies de localisation. Les outils développés sont une première tentative pour disposer, à l'issue de ce travail, d'une DSC locale sous chargements mécaniques.
Vigouroux, Mathieu. "Mesure de déformation et cristallinité à l'échelle nanométrique par diffraction électronique en mode précession". Thesis, 2015. http://www.theses.fr/2015GRENY012/document.
Texto completoPrecession electron diffraction (PED) is a recent technique used to minimize acquired diffractionpatterns dynamic effects. The primary intention of this PhD work is to improve PED (PrecessionElectron Diffraction) data analysis and treatment methodologies in order to measure the strain at thenanoscale. The strain measurement is intended to reach a 10-3 strain precision as well as usualmicroscopy techniques like high-resolution imaging. To this end, measurements were made with aJEOL 2010A with a Digistar Nanomegas precession module.The approach developed has been used and tested by measuring the strain in a Si/SiGe multilayeredreference sample with a known Ge Content. Strain measurements reached 1x10-4 sensitivity withexcellent finite element strain simulation agreement. This process has been also applied to measure thestrain in microelectronic InGaAs Quantum Well and an "Ω-gate" experimental transistor devices.The second approach developed has been made to provide a robust means of studying electrontransparent nanomaterial polycrystallinity with precession. Examples of applications of this analysismethod are shown on different devices