Artículos de revistas sobre el tema "Membrane nanodomains"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Membrane nanodomains".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Okamoto, Yukihiro, Kaito Hamaguchi, Mayo Watanabe, Nozomi Watanabe y Hiroshi Umakoshi. "Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope". Membranes 12, n.º 8 (9 de agosto de 2022): 770. http://dx.doi.org/10.3390/membranes12080770.
Texto completoSamhan-Arias, Alejandro K., Joana Poejo, Dorinda Marques-da-Silva, Oscar H. Martínez-Costa y Carlos Gutierrez-Merino. "Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling?" Molecules 28, n.º 23 (2 de diciembre de 2023): 7909. http://dx.doi.org/10.3390/molecules28237909.
Texto completoSilvius, John R. "Membrane Nanodomains". Colloquium Series on Building Blocks of the Cell: Cell Structure and Function 1, n.º 1 (28 de febrero de 2013): 1–103. http://dx.doi.org/10.4199/c00076ed1v01y201303bbc001.
Texto completoLiang, Pengbo, Thomas F. Stratil, Claudia Popp, Macarena Marín, Jessica Folgmann, Kirankumar S. Mysore, Jiangqi Wen y Thomas Ott. "Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains". Proceedings of the National Academy of Sciences 115, n.º 20 (30 de abril de 2018): 5289–94. http://dx.doi.org/10.1073/pnas.1721868115.
Texto completoFukata, Yuko, Ariane Dimitrov, Gaelle Boncompain, Ole Vielemeyer, Franck Perez y Masaki Fukata. "Local palmitoylation cycles define activity-regulated postsynaptic subdomains". Journal of Cell Biology 202, n.º 1 (8 de julio de 2013): 145–61. http://dx.doi.org/10.1083/jcb.201302071.
Texto completoDrab, Mitja, David Stopar, Veronika Kralj-Iglič y Aleš Iglič. "Inception Mechanisms of Tunneling Nanotubes". Cells 8, n.º 6 (21 de junio de 2019): 626. http://dx.doi.org/10.3390/cells8060626.
Texto completoMesarec, Luka, Mitja Drab, Samo Penič, Veronika Kralj-Iglič y Aleš Iglič. "On the Role of Curved Membrane Nanodomains and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding". International Journal of Molecular Sciences 22, n.º 5 (26 de febrero de 2021): 2348. http://dx.doi.org/10.3390/ijms22052348.
Texto completoCebecauer, Marek, Mariana Amaro, Piotr Jurkiewicz, Maria João Sarmento, Radek Šachl, Lukasz Cwiklik y Martin Hof. "Membrane Lipid Nanodomains". Chemical Reviews 118, n.º 23 (26 de octubre de 2018): 11259–97. http://dx.doi.org/10.1021/acs.chemrev.8b00322.
Texto completoMa, Yuanqing, Elizabeth Hinde y Katharina Gaus. "Nanodomains in biological membranes". Essays in Biochemistry 57 (6 de febrero de 2015): 93–107. http://dx.doi.org/10.1042/bse0570093.
Texto completoTraeger, Jeremiah, Dehong Hu, Mengran Yang, Gary Stacey y Galya Orr. "Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution". Membranes 13, n.º 2 (21 de enero de 2023): 142. http://dx.doi.org/10.3390/membranes13020142.
Texto completoKure, Jakob L., Thommie Karlsson, Camilla B. Andersen, B. Christoffer Lagerholm, Vesa Loitto, Karl-Eric Magnusson y Eva C. Arnspang. "Using kICS to Reveal Changed Membrane Diffusion of AQP-9 Treated with Drugs". Membranes 11, n.º 8 (28 de julio de 2021): 568. http://dx.doi.org/10.3390/membranes11080568.
Texto completoLi, Guangtao, Qing Wang, Shinako Kakuda y Erwin London. "Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids". Journal of Lipid Research 61, n.º 5 (21 de enero de 2020): 758–66. http://dx.doi.org/10.1194/jlr.ra119000565.
Texto completoStelate, Ayoub, Eva Tihlaříková, Kateřina Schwarzerová, Vilém Neděla y Jan Petrášek. "Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin". Biomolecules 11, n.º 10 (26 de septiembre de 2021): 1407. http://dx.doi.org/10.3390/biom11101407.
Texto completoAshrafzadeh, Parham y Ingela Parmryd. "Methods applicable to membrane nanodomain studies?" Essays in Biochemistry 57 (6 de febrero de 2015): 57–68. http://dx.doi.org/10.1042/bse0570057.
Texto completoHuang, Dingquan, Yanbiao Sun, Zhiming Ma, Meiyu Ke, Yong Cui, Zichen Chen, Chaofan Chen et al. "Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization". Proceedings of the National Academy of Sciences 116, n.º 42 (1 de octubre de 2019): 21274–84. http://dx.doi.org/10.1073/pnas.1911892116.
Texto completoVallés, Ana Sofía y Francisco J. Barrantes. "Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment". Biomolecules 11, n.º 11 (15 de noviembre de 2021): 1697. http://dx.doi.org/10.3390/biom11111697.
Texto completoSarmento, Maria J., Joana C. Ricardo, Mariana Amaro y Radek Šachl. "Organization of gangliosides into membrane nanodomains". FEBS Letters 594, n.º 22 (10 de julio de 2020): 3668–97. http://dx.doi.org/10.1002/1873-3468.13871.
Texto completoNguyen, Ngoc, Amber Lewis, Thuong Pham, Donald Sikazwe y Kwan H. Cheng. "Exploring the Role of Anionic Lipid Nanodomains in the Membrane Disruption and Protein Folding of Human Islet Amyloid Polypeptide Oligomers on Lipid Membrane Surfaces Using Multiscale Molecular Dynamics Simulations". Molecules 28, n.º 10 (19 de mayo de 2023): 4191. http://dx.doi.org/10.3390/molecules28104191.
Texto completoFukata, Masaki, Atsushi Sekiya, Tatsuro Murakami, Norihiko Yokoi y Yuko Fukata. "Postsynaptic nanodomains generated by local palmitoylation cycles". Biochemical Society Transactions 43, n.º 2 (1 de abril de 2015): 199–204. http://dx.doi.org/10.1042/bst20140238.
Texto completoYurtsever, Ayhan, Takeshi Yoshida, Arash Badami Behjat, Yoshihiro Araki, Rikinari Hanayama y Takeshi Fukuma. "Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy". Nanoscale 13, n.º 13 (2021): 6661–77. http://dx.doi.org/10.1039/d0nr09178b.
Texto completoSchneider, Falk, Dominic Waithe, Mathias P. Clausen, Silvia Galiani, Thomas Koller, Gunes Ozhan, Christian Eggeling y Erdinc Sezgin. "Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS". Molecular Biology of the Cell 28, n.º 11 (junio de 2017): 1507–18. http://dx.doi.org/10.1091/mbc.e16-07-0536.
Texto completoArumugam, Senthil y Patricia Bassereau. "Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton". Essays in Biochemistry 57 (6 de febrero de 2015): 109–19. http://dx.doi.org/10.1042/bse0570109.
Texto completoNika, Konstantina y Oreste Acuto. "Membrane nanodomains in T-cell antigen receptor signalling". Essays in Biochemistry 57 (6 de febrero de 2015): 165–75. http://dx.doi.org/10.1042/bse0570165.
Texto completoKarner, Andreas, Benedikt Nimmervoll, Birgit Plochberger, Enrico Klotzsch, Andreas Horner, Denis G. Knyazev, Roland Kuttner et al. "Tuning membrane protein mobility by confinement into nanodomains". Nature Nanotechnology 12, n.º 3 (14 de noviembre de 2016): 260–66. http://dx.doi.org/10.1038/nnano.2016.236.
Texto completoOtt, Thomas. "Membrane nanodomains and microdomains in plant–microbe interactions". Current Opinion in Plant Biology 40 (diciembre de 2017): 82–88. http://dx.doi.org/10.1016/j.pbi.2017.08.008.
Texto completode Wit, Gabrielle, John S. H. Danial, Philipp Kukura y Mark I. Wallace. "Dynamic label-free imaging of lipid nanodomains". Proceedings of the National Academy of Sciences 112, n.º 40 (23 de septiembre de 2015): 12299–303. http://dx.doi.org/10.1073/pnas.1508483112.
Texto completoGarcía-Arribas, Aritz B., Félix M. Goñi y Alicia Alonso. "Lipid Self-Assemblies under the Atomic Force Microscope". International Journal of Molecular Sciences 22, n.º 18 (18 de septiembre de 2021): 10085. http://dx.doi.org/10.3390/ijms221810085.
Texto completoHeberle, Frederick A., Milka Doktorova, Haden L. Scott, Allison D. Skinkle, M. Neal Waxham y Ilya Levental. "Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy". Proceedings of the National Academy of Sciences 117, n.º 33 (5 de agosto de 2020): 19943–52. http://dx.doi.org/10.1073/pnas.2002200117.
Texto completoDong, Guohua, Suzhi Li, Mouteng Yao, Ziyao Zhou, Yong-Qiang Zhang, Xu Han, Zhenlin Luo et al. "Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation". Science 366, n.º 6464 (24 de octubre de 2019): 475–79. http://dx.doi.org/10.1126/science.aay7221.
Texto completoHolowka, David y Barbara Baird. "Nanodomains in early and later phases of FcɛRI signalling". Essays in Biochemistry 57 (6 de febrero de 2015): 147–63. http://dx.doi.org/10.1042/bse0570147.
Texto completoTran, Tuan Minh, Choon-Peng Chng, Xiaoming Pu, Zhiming Ma, Xiao Han, Xiaolin Liu, Liang Yang, Changjin Huang y Yansong Miao. "Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains". Plant Cell 34, n.º 1 (13 de noviembre de 2021): 395–417. http://dx.doi.org/10.1093/plcell/koab276.
Texto completoLee, Sungsu, Han Yen Tan, Ivayla I. Geneva, Aleksandr Kruglov y Peter D. Calvert. "Actin filaments partition primary cilia membranes into distinct fluid corrals". Journal of Cell Biology 217, n.º 8 (26 de junio de 2018): 2831–49. http://dx.doi.org/10.1083/jcb.201711104.
Texto completoTapken, W. y A. S. Murphy. "Membrane nanodomains in plants: capturing form, function, and movement". Journal of Experimental Botany 66, n.º 6 (27 de febrero de 2015): 1573–86. http://dx.doi.org/10.1093/jxb/erv054.
Texto completoChen, Xi, Angela Jen, Alice Warley, M. Jayne Lawrence, Peter J. Quinn y Roger J. Morris. "Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition". Biochemical Journal 417, n.º 2 (23 de diciembre de 2008): 525–33. http://dx.doi.org/10.1042/bj20081385.
Texto completoSchneider, Katharina, Eric Seemann, Lutz Liebmann, Rashmi Ahuja, Dennis Koch, Martin Westermann, Christian A. Hübner, Michael M. Kessels y Britta Qualmann. "ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function". Journal of Cell Biology 205, n.º 2 (21 de abril de 2014): 197–215. http://dx.doi.org/10.1083/jcb.201307088.
Texto completoYang, Xiaojuan y Wim Annaert. "The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication". Membranes 11, n.º 4 (30 de marzo de 2021): 248. http://dx.doi.org/10.3390/membranes11040248.
Texto completoChen, Yong, Lingyun Shao, Zahida Ali, Jiye Cai y Zheng W. Chen. "NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion". Blood 111, n.º 8 (15 de abril de 2008): 4220–32. http://dx.doi.org/10.1182/blood-2007-07-101691.
Texto completoGlöckner, Nina, Sven zur Oven-Krockhaus, Leander Rohr, Frank Wackenhut, Moritz Burmeister, Friederike Wanke, Eleonore Holzwart, Alfred J. Meixner, Sebastian Wolf y Klaus Harter. "Three-Fluorophore FRET Enables the Analysis of Ternary Protein Association in Living Plant Cells". Plants 11, n.º 19 (6 de octubre de 2022): 2630. http://dx.doi.org/10.3390/plants11192630.
Texto completoHe, Hai-Tao y Didier Marguet. "Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy". Annual Review of Physical Chemistry 62, n.º 1 (5 de mayo de 2011): 417–36. http://dx.doi.org/10.1146/annurev-physchem-032210-103402.
Texto completoGolfetto, Ottavia, Sunetra Biswas, Raphael Jorand, Huiying Zhang, Steven Jeffrey Tobin, Daniel Ganjali, Athanasios Sideris, Alexander R. Small, Vladana Vukojević y Tijana Jovanović-Talisman. "Opioid Receptors are Organized into Nanodomains in the Plasma Membrane". Biophysical Journal 110, n.º 3 (febrero de 2016): 484a. http://dx.doi.org/10.1016/j.bpj.2015.11.2587.
Texto completoKoklič, Tilen, Alenka Hrovat, Ramon Guixà-González, Ismael Rodríguez-Espigares, Damaris Navio, Robert Frangež, Matjaž Uršič et al. "Electron Paramagnetic Resonance Gives Evidence for the Presence of Type 1 Gonadotropin-Releasing Hormone Receptor (GnRH-R) in Subdomains of Lipid Rafts". Molecules 26, n.º 4 (12 de febrero de 2021): 973. http://dx.doi.org/10.3390/molecules26040973.
Texto completoMcKenna, J. F., D. J. Rolfe, S. E. D. Webb, A. F. Tolmie, S. W. Botchway, M. L. Martin-Fernandez, C. Hawes y J. Runions. "The cell wall regulates dynamics and size of plasma-membrane nanodomains inArabidopsis". Proceedings of the National Academy of Sciences 116, n.º 26 (10 de junio de 2019): 12857–62. http://dx.doi.org/10.1073/pnas.1819077116.
Texto completoSantos, Natalia, Luthary Segura, Amber Lewis, Thuong Pham y Kwan H. Cheng. "Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer’s and Diabetic Diseases". Molecules 29, n.º 3 (5 de febrero de 2024): 740. http://dx.doi.org/10.3390/molecules29030740.
Texto completoSrinivasan, P. "Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging". Applied Physics Letters 108, n.º 3 (18 de enero de 2016): 033702. http://dx.doi.org/10.1063/1.4940388.
Texto completoSugiyama, Michael G., Gregory D. Fairn y Costin N. Antonescu. "EGFR signaling in breast cancer requires licensing from separate membrane nanodomains". FASEB Journal 34, S1 (abril de 2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.05687.
Texto completoLasserre, Rémi, Xiao-Jun Guo, Fabien Conchonaud, Yannick Hamon, Omar Hawchar, Anne-Marie Bernard, Saïdi M'Homa Soudja et al. "Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation". Nature Chemical Biology 4, n.º 9 (20 de julio de 2008): 538–47. http://dx.doi.org/10.1038/nchembio.103.
Texto completoMurata, Michio, Shinya Hanashima, Yo Yano, Tomokazu Yasuda, Hiroshi Tsuchikawa, Nobuaki Matsumori, Masanao Kinoshita y J. P. Slotte. "Sphingomyelin Nanodomains Mainly Constitute Liquid-Ordered Phase of Ternary Model Membrane". Biophysical Journal 118, n.º 3 (febrero de 2020): 78a. http://dx.doi.org/10.1016/j.bpj.2019.11.600.
Texto completoThibivilliers, Sandra, Andrew Farmer y Marc Libault. "Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants". Plants 9, n.º 3 (19 de marzo de 2020): 377. http://dx.doi.org/10.3390/plants9030377.
Texto completoJeyifous, Okunola, Eric I. Lin, Xiaobing Chen, Sarah E. Antinone, Ryan Mastro, Renaldo Drisdel, Thomas S. Reese y William N. Green. "Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation". Proceedings of the National Academy of Sciences 113, n.º 52 (12 de diciembre de 2016): E8482—E8491. http://dx.doi.org/10.1073/pnas.1612963113.
Texto completoOelke, Jochen, Andreea Pasc, Achim Wixforth, Oleg Konovalov y Motomu Tanaka. "Highly uniform, strongly correlated fluorinated lipid nanodomains embedded in biological membrane models". Applied Physics Letters 93, n.º 21 (24 de noviembre de 2008): 213901. http://dx.doi.org/10.1063/1.3028088.
Texto completo