Literatura académica sobre el tema "Membrane destabilization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Membrane destabilization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Membrane destabilization"
Sun, Jan, Elena E. Pohl, Oxana O. Krylova, Eberhard Krause, Igor I. Agapov, Alexander G. Tonevitsky y Peter Pohl. "Membrane destabilization by ricin". European Biophysics Journal 33, n.º 7 (26 de marzo de 2004): 572–79. http://dx.doi.org/10.1007/s00249-004-0400-9.
Texto completoStorm, G. y E. Wagner. "Membrane destabilization for improved cystolic delivery". Advanced Drug Delivery Reviews 38, n.º 3 (agosto de 1999): 195. http://dx.doi.org/10.1016/s0169-409x(99)00028-9.
Texto completoSchutzbach, John S. y John W. Jensen. "Bilayer membrane destabilization induced by dolichylphosphate". Chemistry and Physics of Lipids 51, n.º 3-4 (noviembre de 1989): 213–18. http://dx.doi.org/10.1016/0009-3084(89)90008-x.
Texto completoLuján, H. D. y D. H. Bronia. "Intermembrane lipid transfer duringTrypanosoma cruzi-induced erythrocyte membrane destabilization". Parasitology 108, n.º 3 (abril de 1994): 323–34. http://dx.doi.org/10.1017/s0031182000076162.
Texto completoSteponkus, Peter. "Membrane destabilization resulting from freeze-induced dehydration". Cryobiology 24, n.º 6 (diciembre de 1987): 555. http://dx.doi.org/10.1016/0011-2240(87)90096-4.
Texto completoMorales, Joselyn y Suren A. Tatulian. "Membrane Destabilization by Alzheimer's Amyloid β Peptide". Biophysical Journal 104, n.º 2 (enero de 2013): 239a—240a. http://dx.doi.org/10.1016/j.bpj.2012.11.1351.
Texto completoJin, Seok Min, Michael Lazarou, Chunxin Wang, Lesley A. Kane, Derek P. Narendra y Richard J. Youle. "Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL". Journal of Cell Biology 191, n.º 5 (29 de noviembre de 2010): 933–42. http://dx.doi.org/10.1083/jcb.201008084.
Texto completoHarper, Sandra L., Sira Sriswasdi, Hsin-Yao Tang, Massimiliano Gaetani, Patrick G. Gallagher y David W. Speicher. "The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation". Blood 122, n.º 17 (24 de octubre de 2013): 3045–53. http://dx.doi.org/10.1182/blood-2013-02-487702.
Texto completoLau, Wai Leung, David S. Ege, James D. Lear, Daniel A. Hammer y William F. DeGrado. "Oligomerization of Fusogenic Peptides Promotes Membrane Fusion by Enhancing Membrane Destabilization". Biophysical Journal 86, n.º 1 (enero de 2004): 272–84. http://dx.doi.org/10.1016/s0006-3495(04)74103-x.
Texto completoBrasseur, Robert. "Tilted peptides: a motif for membrane destabilization (Hypothesis)". Molecular Membrane Biology 17, n.º 1 (enero de 2000): 31–40. http://dx.doi.org/10.1080/096876800294461.
Texto completoTesis sobre el tema "Membrane destabilization"
Botes, Jacobus Petrus. "Flux enhancement using flow destabilization in capillary membrane ultrafiltration". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51763.
Texto completoENGLISH ABSTRACT: The aim of the thesis was to investigate the use of flow destabilization methods, combined with permeate backflushing (BIF) or on their own, on flux recovery and maintenance in capillary UF membrane systems under cross-flow (XF) and dead-end (DE) operating conditions. Various hydraulic and mechanical methods have been used to remove the accumulated cake layer and improve steady state process flux. Permeate backflushing (B/F) is the most widely used but the drawbacks are loss of product and extensive down-time. In a pilot plant study for ultrafiltration of surface waters containing high NOM, turbidity and cation loads, the use of flow destabilization, or feed flow reversal (FFR) combined with cross-flow B/F was able to improve the normalised flux by 10.7 ± 3.4 %, compared with 3.2 ± 1.6 % improvement for BIF without FFR. When a second B/F included FFR, the flux improvement was 7.0 ± 2.0 % compared with 4.3 ± 2.5 % for a B/F without FFR. The hypothesis was proposed that the flow destabilization caused slight lifting of the oriented cake layer, while the cross-flow B/F was able to sweep the lifted cake out of the lumen. If the flow destabilization may be effected by a simple but effective and low-cost method, and if this flow destabilization may be combined with reverse flow for short durations, the "lift-and-sweep" approach will be the ideal method of maintaining process flux and increasing membrane life. Such a flow destabilization method, now named "reversepressure pulsing" (RIP), was developed. The method involves circulation of feed water in a recycle loop for 2 s to gain momentum, followed by closure of a fast-action valve upstream of the modules. The momentum of the water in the concentrate loop carries it into an air-filled feed accumulator, while concentrate and reverse-flow permeate (which also lifts the fouling layer) are discharged to the atmosphere using the recycle pump for 15 s. When the valve opens again, the air in the accumulator forces the water under pressure through the membrane lumens, causing a pressure pulse and flow perturbations that lift, shift and break up the fouling layer. During 3 such "lift-and-sweep" events, the cake is lifted and the debris is swept out of the lumen. Experimental results for uninterrupted dead-end filtration at a UF pilot plant using RIP only on a severely fouled membrane, indicated that the RIP increased the flux by 18.4 % and decreased the dP by 8.2 % over a 7.2 h period. The method is effective in removing the cake layer intermittently and no long-term flux decline occurred for a period of 555 h since the previous chemical cleaning.
AFRIKAANSE OPSOMMING: Die doel van die tesis was om die gebruik van vloei-destabiliserings metodes, alleen of gekombineer met permeaat-terugwas, op vloed-herwinning en instandhouding in kapillêre UF membraan-stelsels tydens kruisvloei en doodloop bedryf, te ondersoek. Verskeie meganiese en hidrouliese metodes word gebruik in membraan stelsels om die koeklaag op die membraan se oppervlak te verwyder en die gestadigde-toestand vloed te verbeter. Vanhierdie metodes word permeaat-terugwas die meeste gebruik, maar het sy nadele insluitend verlies van produk en produksietyd. In 'n loodsstudie vir die ultrafiltrasie van oppervlakwaters wat hoë beladings NOM, turbiditeit en katione bevat, is die waarneming gemaak dat kruisvloei terugwas met vloeidestabilisering (voerrigting-verandering) die genormaliseerde vloed met 10.7 ± 3.4 % kon verbeter, vergeleke met 'n 3.2 ± l.6 % verbetering sonder voerrigting-verandering. Vir 'n tweede terugwas was die verbetering 7.0 ± 2.0 % vergeleke met 4.3 ± 2.5 % sonder voerrigtingverandering. Die hipotese was voorgestel dat die vloei-destabilisering die geoiënteerde koeklaag van die oppervlak gelig het, en die kruisvloei terugwas die geligde koeklaag uit die lumen kon vee. Indien hierdie vloei-destabilisering bewerk kan word deur 'n eenvoudige maar effektiewe manier, en indien dit gekombineer kan word met terugvloei van produk vir kort tydperke, sal hierdie "lig-en-vee" benadering die ideale metode wees om die membrane se vloed te verbeter en leeftyd te verleng. So 'n vloei-destabiliseringsmetode, nou genoem "terugdruk-pulsering", is ontwikkel. Die metode behels die sirkuiering van voer-water vir 2 s in 'n hersirkulasielus om momentum op te bou, gevolg deur die toemaak van 'n snel-aksie klep stroom-op van die modules. Die water in die konsentraat-lus se momentum dra dit vorentoe tot in In lug-gevulde voer-akkumulator, terwyl konsentraat en terug-vloei permeaat (wat ook tot 'n mate die koeklaag lig) ook na die atmosfeer gewend word vir 15 s deur die hersirkulasiepomp. As die klep weer oopgaan, ontspan die lug in die akkumulator, en forseer die water daarin onder druk deur die membraan-lumens. Die druk-puls en vloei-perturbasies lig, skuif en breek die koeklaag op. Tydens 3 agtereenvolgende "lig-en-vee" aksies word die koeklaag effektief opgebreek en uit die lumen gevee. Eksperimentele uitslae vir ononderbroke doodloop bedryf op uitermate aangevuilde membrane van 'n ultrafiltrasie loodsaanleg toegerus met terugdruk-pulsering, het getoon dat die vloed met 18.4 % verbeter kon word en die dP met 8.2 % verminder kon word in slegs 7.2 h. Die metode breek die koeklaag effektief op, en geen langtermyn vloed-afname is waargeneem vir meer as 555 h sedert die vorige chemiese was-prosedure nie.
Flores-Canales, Jose C. "Computational Studies of Acidic Destabilization and Membrane Association of Diphtheria Toxin Translocation (T) Domain". Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/1038.
Texto completoAlmeida, João Carlos Ribas de. "Ataxin-3 aggregation and its impact on membrane destabilization". Master's thesis, 2010. http://hdl.handle.net/10316/28723.
Texto completoFani, Giulia. "IDENTIFICATION OF MEMBRANE CA2+ CHANNELS ACTIVATED BY PROTEIN MISFOLDED OLIGOMERS AND THEIR ACTIVATION MECHANISM". Doctoral thesis, 2021. http://hdl.handle.net/2158/1260286.
Texto completoCapítulos de libros sobre el tema "Membrane destabilization"
Steponkus, P. L. y M. S. Webb. "Freeze-Induced Dehydration and Membrane Destabilization in Plants". En Water and Life, 338–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76682-4_20.
Texto completoDunina-Barkovskaya, Antonina. "Cholesterol Recognition Motifs (CRAC) in the S Protein of Coronavirus: A Possible Target for Antiviral Therapy?" En Management of Dyslipidemia. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95977.
Texto completoDíaz, Mario y Raquel Marin. "Lipid Rafts and Development of Alzheimer’s Disease". En Cerebral and Cerebellar Cortex – Interaction and Dynamics in Health and Disease. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94608.
Texto completoAdetunji, Charles Oluwaseun, Olugbemi Tope Olaniyan, Osikemekha Anthony Anani, Abel Inobeme, Awotunde Oluwasegun Samson, Julius Kola Oloke, Wadzani Dauda Palnam y Sana Ali. "Role of biosurfactant in the destruction of pores and destabilization of the biological membrane of pathogenic microorganisms". En Green Sustainable Process for Chemical and Environmental Engineering and Science, 175–88. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85146-6.00014-0.
Texto completoSteponkus, Peter L., Matsuo Uemura y Murray S. Webb. "Freeze-Induced Destabilization of Cellular Membranes and Lipid Bilayers". En Permeability and Stability of Lipid Bilayers, 77–104. CRC Press, 2017. http://dx.doi.org/10.1201/9780203743805-4.
Texto completoJoner, Michael, Maria Isabel Castellanos, Anna Bulin y Kristin Steigerwald. "Pathology of stable coronary artery disease". En ESC CardioMed, editado por William Wijns, 1315–20. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0325.
Texto completoJoner, Michael, Maria Isabel Castellanos, Anna Bulin y Kristin Steigerwald. "Pathology of stable coronary artery disease". En ESC CardioMed, editado por William Wijns, 1315–20. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0325_update_001.
Texto completoActas de conferencias sobre el tema "Membrane destabilization"
Zheng, Ying y Wilson S. Meng. "Polycation Coated Polymeric Particles as Vehicles of RNA Delivery Into Immune Cells". En ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3714.
Texto completoRamlee, Azierah, Chel-Ken Chiam y Rosalam Sarbatly. "Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding". En 8TH INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY 2017 (NANO-SciTech 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5034535.
Texto completo