Literatura académica sobre el tema "Mechanism of attention"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mechanism of attention".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mechanism of attention"
Zang, Yubin, Zhenming Yu, Kun Xu, Minghua Chen, Sigang Yang y Hongwei Chen. "Fiber communication receiver models based on the multi-head attention mechanism". Chinese Optics Letters 21, n.º 3 (2023): 030602. http://dx.doi.org/10.3788/col202321.030602.
Texto completoYoo, Sungwook, Hanjun Goo y Kyuseok Shim. "Improving Review-based Attention Mechanism". KIISE Transactions on Computing Practices 27, n.º 10 (31 de octubre de 2021): 486–91. http://dx.doi.org/10.5626/ktcp.2021.27.10.486.
Texto completoJia, Yuening. "Attention Mechanism in Machine Translation". Journal of Physics: Conference Series 1314 (octubre de 2019): 012186. http://dx.doi.org/10.1088/1742-6596/1314/1/012186.
Texto completoSieb, R. A. "A brain mechanism for attention". Medical Hypotheses 33, n.º 3 (noviembre de 1990): 145–53. http://dx.doi.org/10.1016/0306-9877(90)90164-a.
Texto completoPark, Da-Sol y Jeong-Won Cha. "Image Caption Generation using Object Attention Mechanism". Journal of KIISE 46, n.º 4 (30 de abril de 2019): 369–75. http://dx.doi.org/10.5626/jok.2019.46.4.369.
Texto completoSpironelli, Chiara, Mariaelena Tagliabue y Carlo Umiltà. "Response Selection and Attention Orienting". Experimental Psychology 56, n.º 4 (enero de 2009): 274–82. http://dx.doi.org/10.1027/1618-3169.56.4.274.
Texto completoSonglin Yin, Songlin Yin y Fei Tan Songlin Yin. "YOLOv4-A: Research on Traffic Sign Detection Based on Hybrid Attention Mechanism". 電腦學刊 33, n.º 6 (diciembre de 2022): 181–92. http://dx.doi.org/10.53106/199115992022123306015.
Texto completoMao, Guojun, Guanyi Liao, Hengliang Zhu y Bo Sun. "Multibranch Attention Mechanism Based on Channel and Spatial Attention Fusion". Mathematics 10, n.º 21 (6 de noviembre de 2022): 4150. http://dx.doi.org/10.3390/math10214150.
Texto completoV, Ms Malge Shraddha. "Generating Image Descriptions using Attention Mechanism". International Journal for Research in Applied Science and Engineering Technology 9, n.º 3 (31 de marzo de 2021): 1047–56. http://dx.doi.org/10.22214/ijraset.2021.33397.
Texto completoYakura, Hiromu, Shinnosuke Shinozaki, Reon Nishimura, Yoshihiro Oyama y Jun Sakuma. "Neural malware analysis with attention mechanism". Computers & Security 87 (noviembre de 2019): 101592. http://dx.doi.org/10.1016/j.cose.2019.101592.
Texto completoTesis sobre el tema "Mechanism of attention"
Fitzgerald, Marilyn. "Are attention bias and interpretation bias reflections of a single common mechanism or multiple independent mechanisms?" University of Western Australia. School of Psychology, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0052.
Texto completoYan, Shiyang. "Visual attention mechanism in deep learning and its applications". Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3028892/.
Texto completoParker, Amanda Louise. "A cross-modal investigation into the relationships between bistable perception and a global temporal mechanism". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9545.
Texto completoRaykos, Bronwyn C. "Attentional and interpretive biases : independent dimensions of individual difference or expressions of a common selective processing mechanism?" University of Western Australia. School of Psychology, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0018.
Texto completoWang, Jing. "Hyperspectral Image Classification Based on Deep Learning and Module Inspired by Human Attention Mechanism". Thesis, Griffith University, 2020. http://hdl.handle.net/10072/397634.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
DAL, MOLIN Anna. "Interaction between mechanism of attention selection in space and time: Behavioural and electrophysiological evidence". Doctoral thesis, Università degli Studi di Verona, 2009. http://hdl.handle.net/11562/337444.
Texto completoThe study of mechanisms involved in spatial attention is one of the most investigated field inmodern neuroscience, but in the last years a growing interest has been devoted to unveil themechanisms concerning also the temporal aspects of attention. In this thesis three experiment arereported that tried to cast more light on the temporal aspects of attention and on the relationshipbetween spatial and temporal attentional mechanisms.In the first experiment the relationship between spatial and temporal deficit in selective visualattention has been investigated in a group of neglect patients using a temporal order judgement task(TOJ). The main finding is a stronger impairment in temporal selection for spatial position in whichthe attention selection is more impaired, suggesting an interaction between the two aspects in themodulation of the deficit.The second and the third experiment investigated temporal expectations generated by a regularrhythm. In particular, the impact of exogenous and endogenous temporal expectation has beencompared in a discrimination task, revealing the pervasive effect of regularity of movement andspeed in orienting attention in time. Moreover, it has been confirmed the combined effect of spatialand temporal expectations in modulation of electrophysiological response.These results suggest the existence of an interaction between spatial and temporal mechanisms ofattention.
Isunza, Navarro Abgeiba Yaroslava. "Evaluation of Attention Mechanisms for Just-In-Time Software Defect Prediction". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288724.
Texto completoJust-In-Time Defect Prediction (JIT-DP) fokuserar på att förutspå fel i mjukvara vid ändringar i koden, med målet att hjälpa utvecklare att identifiera defekter medan utvecklingsprocessen fortfarande är pågående, och att förbättra kvaliteten hos applikationsprogramvara. Detta arbete studerar djupinlärningstekniker genom att tillämpa attentionmekanismer som har varit framgångsrika inom, bland annat, språkteknologi (NLP). Vi introducerar två nätverk vid namn Convolutional Neural Network with Bidirectional Attention (BACNN), och Bidirectional Attention Code Network (BACoN), som använder en tvåriktad attentionmekanism mellan koden och meddelandet om en mjukvaruändring. Dessutom undersöker vi BERT [17] och RoBERTa [57], attentionarkitekturer för JIT-DP. Mer specifikt studerar vi hur effektivt dessa attentionbaserade modeller kan förutspå defekta ändringar, och jämför dem med de bästa tillgängliga arkitekturerna DeePJIT [37] och TLEL [101]. Våra experiment utvärderar modellerna genom att använda mjukvaruändringar från det öppna källkodsprojektet OpenStack. Våra resultat visar att attentionbaserade nätverk överträffar referensmodellen sett till träffsäkerheten i de olika scenarierna. De attentionbaserade modellerna, framför allt BERT och RoBERTa, demonstrerade lovade resultat när det kommer till att identifiera defekta mjukvaruändringar och visade sig vara effektiva på att förutspå defekter i ändringar av nya mjukvaruversioner.
PUTELLI, LUCA. "Attention Mechanism e Interpretabilità del Deep Learning per il Natural Language Processing in Ambito Biomedico". Doctoral thesis, Università degli studi di Brescia, 2021. http://hdl.handle.net/11379/548259.
Texto completoRaykos, Bronwyn C. "Attentional and interpretive biases : independent dimensions of individual difference or expressions of a common selective processing mechanism? /". Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0018.
Texto completoMa, Tengfei. "A Graph Attention plus Reinforcement Learning Method for Antenna Tilt Optimization". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300111.
Texto completoOptimering av fjärrlutning är en effektiv metod för att nå optimala nyckeltal genom fjärrstyrning av den vertikala lutningen av en antenn i en basstation. Att förbättra nyckeltalen innebär att förbättra sammarbetseffekten mellan antenner eftersom nyckeltalen är mått på kvalitén av sammarbetet mellan den antenn som optimeras och dess angränsande antenner. Förstärkande Inlärning (FI) är en lämplig metod för att lära sig en optimal strategi för reglering av antennlutningen eftersom agenten inom FI kan generera den optimala epsilongiriga optimeringsstrategin genom att observera miljön och lära sig från par av tillstånd och aktioner. Nuvarande modeller genererar dock endast lutningsstrategier genom att tolka egenskaperna hos den antenn som ska optimeras, vilket inte är tillräckligt för att karatärisera mobilnätverket bestående av antennen som ska optimeras samt dess angränsande antenner. Därav är inkluderingen av de angränsande antennernas egenskaper i modellen viktig för att förbättra optimeringsstrategin. Detta arbete introducerar Graf- Uppmärksammat Nätverk för att modellera de angränsande antennernas påverkan på den antenn som ska optimeras genom uppmärksamhetsmekanismen. Metoden genererar en lågdimensionell vektor med större förmåga att representera den optimerade antennens tillstånd i FI modellen genom att hantera data i struktur av en graf. Den nya modellen, Graf- Uppmärksammat Q- Nätverk (GUQ), är en modell baserad på DQN med mål att nå bättre prestanda än en standard DQN- modell, utvärderat efter samma mätvärde –– förbättring av nyckeltalen. Eftersom GUQ har en större upfattning av miljön så överträffar metoden DQN- modellen genom en fjorton procent bättre prestandaökning. Dessutom, så överträffar GUQ även DQN i form av snabbare konvergens.
Libros sobre el tema "Mechanism of attention"
Glazkova, Mariya. Court practice in the mechanism of legal monitoring. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/25284.
Texto completoCantoni, Virginio, Maria Marinaro y Alfredo Petrosino, eds. Visual Attention Mechanisms. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0111-4.
Texto completoV, Cantoni, Marinaro M y Petrosino Alfredo, eds. Visual attention mechanisms. New York: Kluwer Academic/Plenum Publishers, 2002.
Buscar texto completoCantoni, V. Visual Attention Mechanisms. Boston, MA: Springer US, 2002.
Buscar texto completoSamovich, Yuliya y Ramil Sharifullin. International protection of human rights: universal mechanisms. ru: Publishing Center RIOR, 2021. http://dx.doi.org/10.29039/02042-5.
Texto completoSabine, Maasen, ed. Mechanisms of visual attention: A cognitive neuroscience perspective. East Sussex, UK: Psychology Press, 1998.
Buscar texto completoBalynin, Igor', Natal'ya Vlasova, Aleksey Gubernatorov, Lyudmila Koreckaya, Dmitriy Kuznecov, Evgeniy Lomov, Tat'yana Nikerova et al. Corporate finance. ru: INFRA-M Academic Publishing LLC., 2019. http://dx.doi.org/10.12737/1013023.
Texto completoBauer-Amin, Sabine, Leonardo Schiocchet y Maria Six-Hohenbalken, eds. Embodied Violence and Agency in Refugee Regimes. Bielefeld, Germany: transcript Verlag, 2022. http://dx.doi.org/10.14361/9783839458020.
Texto completoBaruni, Jalal Kenji. Mechanisms of attention in visual cortex and the amygdala. [New York, N.Y.?]: [publisher not identified], 2016.
Buscar texto completo1939-, Pfaff Donald W. y Kieffer Brigitte L, eds. Molecular and biophysical mechanisms of arousal, alertness, and attention. Boston, Mass: Published by Blackwell Pub. on behalf of the New York Academy of Sciences, 2008.
Buscar texto completoCapítulos de libros sobre el tema "Mechanism of attention"
al-Rifaie, Mohammad Majid y John Mark Bishop. "Swarmic Sketches and Attention Mechanism". En Evolutionary and Biologically Inspired Music, Sound, Art and Design, 85–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36955-1_8.
Texto completoAhuja, Stuti, Aftaabahmed Sheikh, Shubhadarshini Nadar y Vanitha Shunmugaperumal. "Video Descriptor Using Attention Mechanism". En Communications in Computer and Information Science, 168–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12638-3_15.
Texto completoDong, Hongbin, Lei Yang y Kunming Han. "Collaborative Filtering Based on Attention Mechanism". En Communications in Computer and Information Science, 3–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9298-7_1.
Texto completoKakanakou, Miguel, Hongwei Xie y Yan Qiang. "Double Attention Mechanism for Sentence Embedding". En Web Information Systems and Applications, 228–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02934-0_21.
Texto completoNguyen, Bao T., Om Prakash y Anh H. Vo. "Attention Mechanism for Fashion Image Captioning". En Advances in Intelligent Systems and Computing, 93–104. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62324-1_9.
Texto completoWu, Qian, Chunjie Cao, Jianbin Mai y Fangjian Tao. "Robust GAN Based on Attention Mechanism". En Cyberspace Safety and Security, 78–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73671-2_8.
Texto completoVelpuri, Sai Yashwanth, Sonakshi Karanwal y R. Anita. "Neural Machine Translation Using Attention Mechanism". En Proceedings of International Conference on Recent Trends in Computing, 717–29. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7118-0_61.
Texto completoKaman, Sweta. "Attention Mechanism-Based News Sentiment Analyzer". En Innovations in Computer Science and Engineering, 235–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4543-0_25.
Texto completoLoureiro, Cátia, Vítor Filipe y Lio Gonçalves. "Attention Mechanism for Classification of Melanomas". En Communications in Computer and Information Science, 65–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-23236-7_5.
Texto completoAzad, Reza, Maryam Asadi-Aghbolaghi, Mahmood Fathy y Sergio Escalera. "Attention Deeplabv3+: Multi-level Context Attention Mechanism for Skin Lesion Segmentation". En Computer Vision – ECCV 2020 Workshops, 251–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66415-2_16.
Texto completoActas de conferencias sobre el tema "Mechanism of attention"
Zheyuan, Wang, Mao Yingchi, Shuai Zhang, Yong Qian, Zhang Zeyu y Chen Zhihao. "Scale Attention Mechanism". En 2022 IEEE Eighth International Conference on Big Data Computing Service and Applications (BigDataService). IEEE, 2022. http://dx.doi.org/10.1109/bigdataservice55688.2022.00031.
Texto completoShanthamallu, Uday Shankar, Jayaraman J. Thiagarajan y Andreas Spanias. "A Regularized Attention Mechanism for Graph Attention Networks". En ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054363.
Texto completoAtiwetsakun, Jednipat y Santitham Prom-on. "Thai Tokenization with Attention Mechanism". En 2021 2nd International Conference on Big Data Analytics and Practices (IBDAP). IEEE, 2021. http://dx.doi.org/10.1109/ibdap52511.2021.9552074.
Texto completoWu, Zhuanghui, Guoheng Huang y Lianglun Cheng. "An Effective Visual Attention Mechanism". En Proceedings of the 2019 International Conference on Computer, Network, Communication and Information Systems (CNCI 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/cnci-19.2019.47.
Texto completoLiu, Zhipeng, Wei Fang y Jun Sun. "An effective lightweight attention mechanism". En 2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). IEEE, 2021. http://dx.doi.org/10.1109/dcabes52998.2021.00042.
Texto completoLiu, Ying, Wei Wang, Tianlin Zhang y Zhenyu Cui. "AttentionFM: Incorporating Attention Mechanism and Factorization Machine for Credit Scoring". En 2020 International Conference on Data Mining Workshops (ICDMW). IEEE, 2020. http://dx.doi.org/10.1109/icdmw51313.2020.00056.
Texto completoFukui, Hiroshi, Tsubasa Hirakawa, Takayoshi Yamashita y Hironobu Fujiyoshi. "Attention Branch Network: Learning of Attention Mechanism for Visual Explanation". En 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.01096.
Texto completoHuang, Zhongjie, Songlin Sun y Yuhao Liu. "Person Search Based on Attention Mechanism". En 2019 19th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2019. http://dx.doi.org/10.1109/iscit.2019.8905176.
Texto completoKhandelwal, Siddhesh y Leonid Sigal. "AttentionRNN: A Structured Spatial Attention Mechanism". En 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00352.
Texto completoYang, Hua. "Extended Attention Mechanism for TSP Problem". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533472.
Texto completoInformes sobre el tema "Mechanism of attention"
Olton, David S., Kevin Pang y Howard Egeth. Neural Mechanisms of Attention. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1993. http://dx.doi.org/10.21236/ada266315.
Texto completoOlton, David, Howard Egeth y Kevin Pang. Neural Mechanisms of Attention. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1989. http://dx.doi.org/10.21236/ada216478.
Texto completoShulman, Gordon L. Relating Attention to Visual Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1989. http://dx.doi.org/10.21236/ada206452.
Texto completoWoldorff, M. G. Brain Attention Mechanisms in Perception and Performance. Fort Belvoir, VA: Defense Technical Information Center, enero de 2003. http://dx.doi.org/10.21236/ada422630.
Texto completoChapin, John K. Cortical Mechanisms of Attention, Discrimination, and Motor Response to Somaesthetic Stimuli. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1991. http://dx.doi.org/10.21236/ada247228.
Texto completoSynchak, Bohdan. Freedom of choice and freedom of action in the Ukrainian media. Ivan Franko National University of Lviv, febrero de 2022. http://dx.doi.org/10.30970/vjo.2022.51.11400.
Texto completoShulman, Gordon L. y Michael I. Posner. Relating Sensitivity and Criterion Effects to the Internal Mechanisms of Visual Spatial Attention. Fort Belvoir, VA: Defense Technical Information Center, abril de 1988. http://dx.doi.org/10.21236/ada197088.
Texto completoCooper, Rachel y Roz Price. Water Security and Climate Change. Institute of Development Studies (IDS), julio de 2021. http://dx.doi.org/10.19088/k4d.2021.116.
Texto completoNaess, Lars Otto, Jan Selby y Gabrielle Daoust. Climate Resilience and Social Assistance in Fragile and Conflict-Affected Settings. Institute of Development Studies (IDS), febrero de 2022. http://dx.doi.org/10.19088/basic.2022.002.
Texto completoChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova y Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, enero de 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Texto completo