Literatura académica sobre el tema "Mechanical properties"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mechanical properties".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mechanical properties"
Sakamoto, Makoto, Kenji Sato, Koichi Kobayashi, Jun Sakai, Yuji Tanabe y Toshiaki Hara. "Nanoindentation Analysis of Mechanical Properties of Cortical Bone(Bone Mechanics)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 43–44. http://dx.doi.org/10.1299/jsmeapbio.2004.1.43.
Texto completoGotoh, Masaru, Ken Suzuki y Hideo Miura. "OS12-4 Control of Mechanical Properties of Micro Electroplated Copper Interconnections(Mechanical properties of nano- and micro-materials-1,OS12 Mechanical properties of nano- and micro-materials,MICRO AND NANO MECHANICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 186. http://dx.doi.org/10.1299/jsmeatem.2015.14.186.
Texto completoDunca, J. "Mechanical properties of cereal stem". Research in Agricultural Engineering 54, No. 2 (24 de junio de 2008): 91–96. http://dx.doi.org/10.17221/5/2008-rae.
Texto completoArak, Margus, Kaarel Soots, Marge Starast y Jüri Olt. "Mechanical properties of blueberry stems". Research in Agricultural Engineering 64, No. 4 (31 de diciembre de 2018): 202–8. http://dx.doi.org/10.17221/90/2017-rae.
Texto completoKiselov, V. S. "Mechanical properties of biomorphous ceramics". Semiconductor Physics Quantum Electronics and Optoelectronics 15, n.º 4 (12 de diciembre de 2012): 386–92. http://dx.doi.org/10.15407/spqeo15.04.386.
Texto completoNamazu, Takahiro. "OS12-1 MEMS and Nanotechnology for Experimental Mechanics(invited,Mechanical properties of nano- and micro-materials-1,OS12 Mechanical properties of nano- and micro-materials,MICRO AND NANO MECHANICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 183. http://dx.doi.org/10.1299/jsmeatem.2015.14.183.
Texto completoKubík, Ľ. y V. Kažimírová. "Mechanical properties of pellets in compression". Research in Agricultural Engineering 61, Special Issue (2 de junio de 2016): S1—S8. http://dx.doi.org/10.17221/17/2015-rae.
Texto completoHan, Zhong Kai, Ming Liu y Yin Jun Gao. "Mechanical Properties of Stone Masonry Mechanical Properties". Applied Mechanics and Materials 507 (enero de 2014): 277–80. http://dx.doi.org/10.4028/www.scientific.net/amm.507.277.
Texto completoSkalický, J. "Research of sugar-beet tubers mechanical properties". Research in Agricultural Engineering 49, No. 3 (8 de febrero de 2012): 80–84. http://dx.doi.org/10.17221/4956-rae.
Texto completoWiwatwongwana, F. y S. Chaijit. "Mechanical Properties Analysis of Gelatin/Carboxymethylcellulose Scaffolds". International Journal of Materials, Mechanics and Manufacturing 7, n.º 3 (junio de 2019): 138–43. http://dx.doi.org/10.18178/ijmmm.2019.7.3.447.
Texto completoTesis sobre el tema "Mechanical properties"
Conca, Luca. "Mechanical properties of polymer glasses : Mechanical properties of polymer glasses". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1050/document.
Texto completoThis manuscript presents recent extensions to the PFVD model, based on the heterogeneity of theh dynamics of glassy polymers at the scale of a few nanometers et solved by 3D numerical simulation, which aim at providing a unified physical description of the mechanical and dynamical properties of glassy polymers during plastic deformation. Three main topics are treated: Plasticization. Under applied deformation, polymers undergo yield at strains of a few percent and stresses of some 10 MPa.We propose that the elastic energy stored at the scale of dynamical heterogeneities accelerates local dynamics. We observe yield stresses of a few 10 MPa are obtained at a few percent of deformation and that plastification is due to a relatively small amount of local yields. It has been observed that dynamics becomes faster and more homogeneous close to yield and that the average mobility attains a stationary value, linear with the strain rate. We propose that stress-induced acceleration of the dynamics enhances the diffusion of monomers from slow domains to fast ones (facilitation mechanism), accelerating local dynamics. This allows for obtaining the homogeneisation of the dynamics, with the same features observed during experiments. Strain-hardening, in highly entangled and cross-linked polymers. At large strain, stress increases with increasing strain, with a characteristic slope (hardening modulus) of order 10 – 100 MPa well below the glass transition. Analogously to a recent theory, we propose that local deformation orients monomers in the drawing direction and slows dows the dynamics, as a consequence of the intensification of local interactions. The hardening moduli mesured, the effect of reticulation and of strain rate are comparable with experimental data. In addition, strain-hardening is found to have a stabilizing effect over strain localization and shear banding
Guillou, Lionel. "Cell Mechanics : Mechanical Properties and Membrane Rupture Criteria". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX041/document.
Texto completoAtherosclerosis is a chronic disease of the arteries that is a major cause of heart attacks and strokes. This thesis aims to provide novel insight into this disease by looking at specific factors involved in its development from a mechanical standpoint.Two important cell types involved in the development and progression of atherosclerosis are adherent endothelial cells and non-adherent leukocytes (white blood cells). We developed two devices that are able to measure the mechanical properties of both of these cell types. The first one, termed “profile microindentation”, uses micropipettes and microindenters to indent the cell, while the second one uses microfluidics to submit cells to an extensional stress.Further, we wondered if mechanics could help us understand when deformations undergone by cells, or stresses exerted on them, could become harmful.As a matter of fact, when atherosclerotic plaques occlude too much of the blood flow, the most common treatment consists of reopening the vessel with a balloon and keeping it open with a tubular wired mesh called a stent. This procedure exerts considerable compressive stress on the endothelium and is known to be associated with extensive endothelial damage. Hence, we seek to find a physical criterion that is predictive of endothelial cell membrane rupture under compression and to compare this to the stress exerted on the endothelium during the stenting procedure, to see if endothelial damage could potentially be avoided.Similarly, we seek to obtain a physical criterion that is predictive of leukocyte membrane rupture. We then compare and contrast the maximum possible deformations of leukocytes depending on whether those deformations are passive (such as when going through the microvasculature) or active (such as when leukocytes traverse the endothelial barrier)
Miao, Yuyang. "Mechanics of textile composites : from geometry to mechanical properties /". Search for this dissertation online, 2005. http://wwwlib.umi.com/cr/ksu/main.
Texto completoLoveless, Thomas A. "Mechanical Properties of Kenaf Composites Using Dynamic Mechanical Analysis". DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4310.
Texto completoOzdemir, Gokhan. "Mechanical Properties Of Cfrp Anchorages". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605890/index.pdf.
Texto completoDimitriu, Radu. "Complex mechanical properties of steel". Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/218319.
Texto completoDrodge, Daniel Ryan. "Mechanical properties of energetic composites". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/265501.
Texto completoRains, Jeffrey K. "Mechanical properties of tracheal cartilage". Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/27994.
Texto completoApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Lintzén, Nina. "Mechanical properties of artificial snow". Licentiate thesis, Luleå tekniska universitet, Geoteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16798.
Texto completoGodkänd; 2013; 20131002 (ninlin); Tillkännagivande licentiatseminarium 2013-10-23 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Nina Lintzén Ämne: Geoteknik/Soil Mechanics and Foundation Engineering Uppsats: Mechanical Properties of Artificial Snow Examinator: Professor Sven Knutsson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Tekn. lic. Lars Vikström, LKAB, Luleå Tid: Fredag den 15 november 2013 kl 10.00 Plats: F1031, Luleå tekniska universitet
Root, Samuel E. "Mechanical Properties of Semiconducting Polymers". Thesis, University of California, San Diego, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10745535.
Texto completoMechanical softness and deformability underpin most of the advantages offered by semiconducting polymers. A detailed understanding of the mechanical properties of these materials is crucial for the design and manufacturing of robust, thin-film devices such as solar cells, displays, and sensors. The mechanical behavior of polymers is a complex function of many interrelated factors that span multiple scales, ranging from molecular structure, to microstructural morphology, and device geometry. This thesis builds a comprehensive understanding of the thermomechanical properties of polymeric semiconductors through the development and experimental-validation of computational methods for mechanical simulation. A predictive computational methodology is designed and encapsulated into open-sourced software for automating molecular dynamics simulations on modern supercomputing hardware. These simulations are used to explore the role of molecular structure/weight and processing conditions on solid-state morphology and thermomechanical behavior. Experimental characterization is employed to test these predictions—including the development of simple, new techniques for rigorously characterizing thermal transitions and fracture mechanics of thin films.
Libros sobre el tema "Mechanical properties"
Kambic, HE y AT Yokobori, eds. Biomaterials' Mechanical Properties. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1994. http://dx.doi.org/10.1520/stp1173-eb.
Texto completoE, Kambic Helen, Yokobori A. Toshimitsu 1951- y American Society for Testing and Materials., eds. Biomaterials' mechanical properties. Philadelphia, PA: ASTM, 1994.
Buscar texto completoJanssen, Jules J. A. Mechanical properties of bamboo. Dordrecht: Kluwer Academic Publishers, 1991.
Buscar texto completoPelleg, Joshua. Mechanical Properties of Nanomaterials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74652-0.
Texto completoPelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4342-7.
Texto completoPelleg, Joshua. Mechanical Properties of Ceramics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04492-7.
Texto completoJanssen, Jules J. A. Mechanical Properties of Bamboo. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3236-7.
Texto completoPelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013.
Buscar texto completoJanssen, Jules J. A. Mechanical Properties of Bamboo. Dordrecht: Springer Netherlands, 1991.
Buscar texto completoWachtman, J. B. Mechanical properties of ceramics. 2a ed. Hoboken, N.J: Wiley, 2008.
Buscar texto completoCapítulos de libros sobre el tema "Mechanical properties"
Perego, Gabriele y Gian Domenico Cella. "Mechanical Properties". En Poly(Lactic Acid), 141–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch11.
Texto completoLü, L. y M. O. Lai. "Mechanical Properties". En Mechanical Alloying, 189–201. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5509-4_7.
Texto completoLacroix, Damien y Josep A. Planell. "Mechanical Properties". En Biomedical Materials, 303–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_8.
Texto completoWesolowski, Robert A., Anthony P. Wesolowski y Roumiana S. Petrova. "Mechanical Properties". En The World of Materials, 39–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-17847-5_6.
Texto completoBenboudjema, Farid, Jérôme Carette, Brice Delsaute, Tulio Honorio de Faria, Agnieszka Knoppik, Laurie Lacarrière, Anne Neiry de Mendonça Lopes, Pierre Rossi y Stéphanie Staquet. "Mechanical Properties". En Thermal Cracking of Massive Concrete Structures, 69–114. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76617-1_4.
Texto completoDesnerck, Pieter, Veerle Boel, Bart Craeye y Petra Van Itterbeeck. "Mechanical Properties". En Mechanical Properties of Self-Compacting Concrete, 15–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_2.
Texto completoYoung, Robert J. y Peter A. Lovell. "Mechanical properties". En Introduction to Polymers, 310–428. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3176-4_5.
Texto completoFeuerbacher, M., K. Urban, Ulrich Messerschmidt, Martin Bartsch, Bert Geyer, Lars Ledig, Christoph Rudhart et al. "Mechanical Properties". En Quasicrystals, 431–569. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606572.ch5.
Texto completoRice, Roy. "Mechanical Properties". En Cellular Ceramics, 289–312. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606696.ch4a.
Texto completoHack, Robert. "Mechanical Properties". En Encyclopedia of Earth Sciences Series, 1–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-12127-7_197-1.
Texto completoActas de conferencias sobre el tema "Mechanical properties"
Cleland, A. N. "Mechanical quantum resonators". En ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103895.
Texto completoBaum, Gary A. "Subfracture Mechanical Properties". En Products of Papermaking, editado por C. F. Baker. Fundamental Research Committee (FRC), Manchester, 1993. http://dx.doi.org/10.15376/frc.1993.1.1.
Texto completoWilliamson, David. "Mechanical Properties of PBS9501". En SHOCK COMPRESSION OF CONDENSED MATTER - 2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2004. http://dx.doi.org/10.1063/1.1780362.
Texto completoPolyakov, Maxim y Peter Schweitzer. "Mechanical properties of particles". En 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0066.
Texto completoKaplan-Ashiri, I. "Mechanical Properties of Individual WS2 Nanotubes". En ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812096.
Texto completoNiesz, K. "Mechanical cut of carbon nanotubes". En STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514083.
Texto completoNajidha, S., P. Predeep, N. S. Saxena, P. Predeep, S. Prasanth y A. S. Prasad. "Dynamic Mechanical Properties of Natural Rubber∕Polyaniline Composites". En THERMOPHYSICAL PROPERTIES OF MATERIALS AND DEVICES: IVth National Conference on Thermophysical Properties - NCTP'07. AIP, 2008. http://dx.doi.org/10.1063/1.2927564.
Texto completoDixit, Manasvi, Vinodini Shaktawat, Kananbala Sharma, Narendra S. Saxena, Thaneshwar P. Sharma, P. Predeep, S. Prasanth y A. S. Prasad. "Mechanical Characterization of Polymethyl Methacrylate and Polycarbonate Blends". En THERMOPHYSICAL PROPERTIES OF MATERIALS AND DEVICES: IVth National Conference on Thermophysical Properties - NCTP'07. AIP, 2008. http://dx.doi.org/10.1063/1.2927574.
Texto completoSaxena, Narendra S., Neeraj Jain, P. Predeep, S. Prasanth y A. S. Prasad. "Thermal and Mechanical Characterization of Aniline-Formaldehyde Copolymer". En THERMOPHYSICAL PROPERTIES OF MATERIALS AND DEVICES: IVth National Conference on Thermophysical Properties - NCTP'07. AIP, 2008. http://dx.doi.org/10.1063/1.2927593.
Texto completo"Mechanical Properties of Plain AAC Material". En SP-226: Autoclaved Aerated Concrete-Properties and Structural Design. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14388.
Texto completoInformes sobre el tema "Mechanical properties"
Caskey, Jr, G. R. Mechanical Properties of Uranium Alloys. Office of Scientific and Technical Information (OSTI), octubre de 2002. http://dx.doi.org/10.2172/804673.
Texto completoLuecke, William E., J. David McColskey, Christopher N. McCowan, Stephen W. Banovic, Richard J. Fields, Timothy Foecke, Thomas A. Siewert y Frank W. Gayle. Mechanical properties of structural steel. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-3d.
Texto completoSiegel, R. W. y G. E. Fougere. Mechanical properties of nanophase materials. Office of Scientific and Technical Information (OSTI), noviembre de 1993. http://dx.doi.org/10.2172/10110297.
Texto completoSolem, J. C. y J. K. Dienes. Mechanical Properties of Cellular Materials. Office of Scientific and Technical Information (OSTI), julio de 1999. http://dx.doi.org/10.2172/759178.
Texto completoWallace, J. S., E. R. Jr Fuller y S. W. Freiman. Mechanical properties of aluminum nitride substrates. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5903.
Texto completoMcEachen, G. W. Carbon syntactic foam mechanical properties testing. Office of Scientific and Technical Information (OSTI), enero de 1998. http://dx.doi.org/10.2172/654103.
Texto completoNeuman, A. D., M. J. Blacic, M. Platero, R. S. Romero, K. J. McClellan y J. J. Petrovic. Mechanical properties of melt-derived erbium oxide. Office of Scientific and Technical Information (OSTI), diciembre de 1998. http://dx.doi.org/10.2172/296753.
Texto completoKlueh, R. L., D. J. Alexander y M. Rieth. Mechanical properties of irradiated 9Cr-2WVTa steel. Office of Scientific and Technical Information (OSTI), septiembre de 1998. http://dx.doi.org/10.2172/330624.
Texto completoMcCoy, H. E. y J. F. King. Mechanical properties of Inconel 617 and 618. Office of Scientific and Technical Information (OSTI), febrero de 1985. http://dx.doi.org/10.2172/711763.
Texto completoSwitzner, Nathan T. Stainless Steel Microstructure and Mechanical Properties Evaluation. Office of Scientific and Technical Information (OSTI), junio de 2010. http://dx.doi.org/10.2172/1129927.
Texto completo