Literatura académica sobre el tema "MCMC optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "MCMC optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "MCMC optimization"
Rong, Teng Zhong y Zhi Xiao. "MCMC Sampling Statistical Method to Solve the Optimization". Applied Mechanics and Materials 121-126 (octubre de 2011): 937–41. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.937.
Texto completoZhang, Lihao, Zeyang Ye y Yuefan Deng. "Parallel MCMC methods for global optimization". Monte Carlo Methods and Applications 25, n.º 3 (1 de septiembre de 2019): 227–37. http://dx.doi.org/10.1515/mcma-2019-2043.
Texto completoMartino, L., V. Elvira, D. Luengo, J. Corander y F. Louzada. "Orthogonal parallel MCMC methods for sampling and optimization". Digital Signal Processing 58 (noviembre de 2016): 64–84. http://dx.doi.org/10.1016/j.dsp.2016.07.013.
Texto completoYin, Long, Sheng Zhang, Kun Xiang, Yongqiang Ma, Yongzhen Ji, Ke Chen y Dongyu Zheng. "A New Stochastic Process of Prestack Inversion for Rock Property Estimation". Applied Sciences 12, n.º 5 (25 de febrero de 2022): 2392. http://dx.doi.org/10.3390/app12052392.
Texto completoYang, Fan y Jianwei Ren. "Reliability Analysis Based on Optimization Random Forest Model and MCMC". Computer Modeling in Engineering & Sciences 125, n.º 2 (2020): 801–14. http://dx.doi.org/10.32604/cmes.2020.08889.
Texto completoGlynn, Peter W., Andrey Dolgin, Reuven Y. Rubinstein y Radislav Vaisman. "HOW TO GENERATE UNIFORM SAMPLES ON DISCRETE SETS USING THE SPLITTING METHOD". Probability in the Engineering and Informational Sciences 24, n.º 3 (23 de abril de 2010): 405–22. http://dx.doi.org/10.1017/s0269964810000057.
Texto completoLi, Chunyuan, Changyou Chen, Yunchen Pu, Ricardo Henao y Lawrence Carin. "Communication-Efficient Stochastic Gradient MCMC for Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 4173–80. http://dx.doi.org/10.1609/aaai.v33i01.33014173.
Texto completoYamaguchi, Kazuhiro y Kensuke Okada. "Variational Bayes Inference for the DINA Model". Journal of Educational and Behavioral Statistics 45, n.º 5 (31 de marzo de 2020): 569–97. http://dx.doi.org/10.3102/1076998620911934.
Texto completoXu, Haoyu, Tao Zhang, Yiqi Luo, Xin Huang y Wei Xue. "Parameter calibration in global soil carbon models using surrogate-based optimization". Geoscientific Model Development 11, n.º 7 (27 de julio de 2018): 3027–44. http://dx.doi.org/10.5194/gmd-11-3027-2018.
Texto completoKitchen, James L., Jonathan D. Moore, Sarah A. Palmer y Robin G. Allaby. "MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling". BMC Bioinformatics 13, n.º 1 (2012): 287. http://dx.doi.org/10.1186/1471-2105-13-287.
Texto completoTesis sobre el tema "MCMC optimization"
Mahendran, Nimalan. "Bayesian optimization for adaptive MCMC". Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/30636.
Texto completoKarimi, Belhal. "Non-Convex Optimization for Latent Data Models : Algorithms, Analysis and Applications". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX040/document.
Texto completoMany problems in machine learning pertain to tackling the minimization of a possibly non-convex and non-smooth function defined on a Many problems in machine learning pertain to tackling the minimization of a possibly non-convex and non-smooth function defined on a Euclidean space.Examples include topic models, neural networks or sparse logistic regression.Optimization methods, used to solve those problems, have been widely studied in the literature for convex objective functions and are extensively used in practice.However, recent breakthroughs in statistical modeling, such as deep learning, coupled with an explosion of data samples, require improvements of non-convex optimization procedure for large datasets.This thesis is an attempt to address those two challenges by developing algorithms with cheaper updates, ideally independent of the number of samples, and improving the theoretical understanding of non-convex optimization that remains rather limited.In this manuscript, we are interested in the minimization of such objective functions for latent data models, ie, when the data is partially observed which includes the conventional sense of missing data but is much broader than that.In the first part, we consider the minimization of a (possibly) non-convex and non-smooth objective function using incremental and online updates.To that end, we propose several algorithms exploiting the latent structure to efficiently optimize the objective and illustrate our findings with numerous applications.In the second part, we focus on the maximization of non-convex likelihood using the EM algorithm and its stochastic variants.We analyze several faster and cheaper algorithms and propose two new variants aiming at speeding the convergence of the estimated parameters
Chaari, Lotfi. "Parallel magnetic resonance imaging reconstruction problems using wavelet representations". Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00587410.
Texto completoPark, Jee Hyuk. "On the separation of preferences among marked point process wager alternatives". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2757.
Texto completoBardenet, Rémi. "Towards adaptive learning and inference : applications to hyperparameter tuning and astroparticle physics". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112307.
Texto completoInference and optimization algorithms usually have hyperparameters that require to be tuned in order to achieve efficiency. We consider here different approaches to efficiently automatize the hyperparameter tuning step by learning online the structure of the addressed problem. The first half of this thesis is devoted to hyperparameter tuning in machine learning. After presenting and improving the generic sequential model-based optimization (SMBO) framework, we show that SMBO successfully applies to the task of tuning the numerous hyperparameters of deep belief networks. We then propose an algorithm that performs tuning across datasets, mimicking the memory that humans have of past experiments with the same algorithm on different datasets. The second half of this thesis deals with adaptive Markov chain Monte Carlo (MCMC) algorithms, sampling-based algorithms that explore complex probability distributions while self-tuning their internal parameters on the fly. We start by describing the Pierre Auger observatory, a large-scale particle physics experiment dedicated to the observation of atmospheric showers triggered by cosmic rays. The models involved in the analysis of Auger data motivated our study of adaptive MCMC. We derive the first part of the Auger generative model and introduce a procedure to perform inference on shower parameters that requires only this bottom part. Our model inherently suffers from label switching, a common difficulty in MCMC inference, which makes marginal inference useless because of redundant modes of the target distribution. After reviewing existing solutions to label switching, we propose AMOR, the first adaptive MCMC algorithm with online relabeling. We give both an empirical and theoretical study of AMOR, unveiling interesting links between relabeling algorithms and vector quantization
Cheng, Yougan. "Computational Models of Brain Energy Metabolism at Different Scales". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396534897.
Texto completoThouvenin, Pierre-Antoine. "Modeling spatial and temporal variabilities in hyperspectral image unmixing". Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19258/1/THOUVENIN_PierreAntoine.pdf.
Texto completoDiabaté, Modibo. "Modélisation stochastique et estimation de la croissance tumorale". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM040.
Texto completoThis thesis is about mathematical modeling of cancer dynamics ; it is divided into two research projects.In the first project, we estimate the parameters of the deterministic limit of a stochastic process modeling the dynamics of melanoma (skin cancer) treated by immunotherapy. The estimation is carried out with a nonlinear mixed-effect statistical model and the SAEM algorithm, using real data of tumor size. With this mathematical model that fits the data well, we evaluate the relapse probability of melanoma (using the Importance Splitting algorithm), and we optimize the treatment protocol (doses and injection times).We propose in the second project, a likelihood approximation method based on an approximation of the Belief Propagation algorithm by the Expectation-Propagation algorithm, for a diffusion approximation of the melanoma stochastic model, noisily observed in a single individual. This diffusion approximation (defined by a stochastic differential equation) having no analytical solution, we approximate its solution by using an Euler method (after testing the Euler method on the Ornstein Uhlenbeck diffusion process). Moreover, a moment approximation method is used to manage the multidimensionality and the non-linearity of the melanoma mathematical model. With the likelihood approximation method, we tackle the problem of parameter estimation in Hidden Markov Models
Kim, Tae Seon. "Modeling, optimization, and control of via formation by photosensitive polymers for MCM-D applications". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15017.
Texto completoAl-Hasani, Firas Ali Jawad. "Multiple Constant Multiplication Optimization Using Common Subexpression Elimination and Redundant Numbers". Thesis, University of Canterbury. Electrical and Computer Engineering, 2014. http://hdl.handle.net/10092/9054.
Texto completoCapítulos de libros sobre el tema "MCMC optimization"
Bhatnagar, Nayantara, Andrej Bogdanov y Elchanan Mossel. "The Computational Complexity of Estimating MCMC Convergence Time". En Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 424–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22935-0_36.
Texto completoSzirányi, Tamás y Zoltán Tóth. "Optimization of Paintbrush Rendering of Images by Dynamic MCMC Methods". En Lecture Notes in Computer Science, 201–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44745-8_14.
Texto completoFox, Colin. "Polynomial Accelerated MCMC and Other Sampling Algorithms Inspired by Computational Optimization". En Monte Carlo and Quasi-Monte Carlo Methods 2012, 349–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41095-6_15.
Texto completoSommer, Katrin y Claus Weihs. "Using MCMC as a Stochastic Optimization Procedure for Monophonic and Polyphonic Sound". En Studies in Classification, Data Analysis, and Knowledge Organization, 645–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-70981-7_74.
Texto completoNijkamp, Erik, Bo Pang, Tian Han, Linqi Zhou, Song-Chun Zhu y Ying Nian Wu. "Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference". En Computer Vision – ECCV 2020, 361–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58539-6_22.
Texto completoPeeters, Joris y Eric Beyne. "Analysis and optimization of circuit interconnect performance". En MCM C/Mixed Technologies and Thick Film Sensors, 29–34. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0079-3_4.
Texto completoKumm, Martin. "Optimally Solving MCM Related Problems Using Integer Linear Programming". En Multiple Constant Multiplication Optimizations for Field Programmable Gate Arrays, 87–111. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13323-8_5.
Texto completoSaini, Suman, Jyoti Chawla, Rajeev Kumar y Inderpreet Kaur. "Optimization of Lead Ions Adsorption onto C16-6-16 Incorporated Mesoporous MCM-41 Using Box-Behnken Design". En Environmental Biotechnology For Soil and Wastewater Implications on Ecosystems, 61–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6846-2_9.
Texto completoDiekmann, Odo, Hans Heesterbeek y Tom Britton. "A brief guide to computer intensive statistics". En Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691155395.003.0015.
Texto completoDiekmann, Odo, Hans Heesterbeek y Tom Britton. "Elaborations for Part I". En Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691155395.003.0016.
Texto completoActas de conferencias sobre el tema "MCMC optimization"
Acar, Erdem y Gamze Bayrak. "Reliability Estimation Using MCMC Based Tail Modeling". En 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4412.
Texto completoCannella, Chris y Vahid Tarokh. "Semi-Empirical Objective Functions for MCMC Proposal Optimization". En 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9956603.
Texto completoZhao, Zinan y Mrinal Kumar. "A Split-Bernstein/MCMC Approach to Probabilistically Constrained Optimization". En AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1084.
Texto completoXiang, K. y L. Han. "Adaptive Particle Swarm Optimization Assisted MCMC for Stochastic Inversion". En 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201901305.
Texto completoShadbakht, Sormeh y Babak Hassibi. "MCMC methods for entropy optimization and nonlinear network coding". En 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513737.
Texto completoWu, Y.-T. (Justin). "MCMC-Based Simulation Method for Efficient Risk- Based Maintenance Optimization". En SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-0566.
Texto completoKim, Wonsik y Kyoung Mu Lee. "Scanline Sampler without Detailed Balance: An Efficient MCMC for MRF Optimization". En 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.176.
Texto completoLi Tang, Zheng Zhao, Xiu-Jun Gong y Hua-Peng Zeng. "Optimization of MCMC sampling algorithm for the calculation of PAC-Bayes bound". En 2013 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2013. http://dx.doi.org/10.1109/icmlc.2013.6890745.
Texto completoSantoso, Ryan, Xupeng He, Marwa Alsinan, Hyung Kwak y Hussein Hoteit. "Bayesian Long-Short Term Memory for History Matching in Reservoir Simulations". En SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/203976-ms.
Texto completoMatsumoto, Nobuyuki, Masafumi Fukuma y Naoya Umeda. "Distance between configurations in MCMC simulations and the geometrical optimization of the tempering algorithms". En 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0168.
Texto completoInformes sobre el tema "MCMC optimization"
Franzon, Paul D. Methodology, Tools and Demonstration of MCM System Optimization. Fort Belvoir, VA: Defense Technical Information Center, julio de 1997. http://dx.doi.org/10.21236/ada328732.
Texto completoBrown, Richard B. Design Optimization of a GaAs RISC Microprocessor with Area-Interconnect MCM Packaging. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1999. http://dx.doi.org/10.21236/ada379011.
Texto completo