Índice
Literatura académica sobre el tema "MCMC, Méthode de Monte-Carlo par chaînes de Markov"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "MCMC, Méthode de Monte-Carlo par chaînes de Markov".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "MCMC, Méthode de Monte-Carlo par chaînes de Markov"
Bekhti, Yousra. "Contributions to sparse source localization for MEG/EEG brain imaging". Electronic Thesis or Diss., Paris, ENST, 2018. http://www.theses.fr/2018ENST0017.
Texto completoUnderstanding the full complexity of the brain has been a challenging research project for decades, yet there are many mysteries that remain unsolved. Being able to model how the brain represents, analyzes, processes, and transforms information of millions of different tasks in a record time is primordial for both cognitive and clinical studies. These tasks can go from language, perception, memory, attention, emotion, to reasoning and creativity. Magnetoencephalography (MEG) and Electroencephalography (EEG) allow us to non-invasively measure the brain activity with high temporal and good spatial resolution using sensors positioned all over the head, in order to be analyzed. For a given magnetic-electric field outside the head, there are an infinite number of electrical current source distributed inside of the brain that could have created it. This means that the M/EEG inverse problem is ill-posed, having many solutions to the single problem. This constrains us to make assumptions about how the brain might work. This thesis investigated the assumption of having sparse source estimate, i.e. only few sources are activated for each specific task. This is modeled as a penalized regression with a spatio-temporal regularization term. The aim of this thesis was to use outstanding methodologies from machine learning field to solve the three steps of the M/EEG inverse problem. The first step is to model the problem in the time frequency domain with a multi-scale dictionary to take into account the mixture of non-stationary brain sources, i.e. brain regions share information resulting in brain activity alternating from a source to another. This is done by formulating the problem as a penalized regression with a data fit term and a spatio-temporal regularization term, which has an extra hyperparameter. This hyperparameter is mostly tuned by hand, which makes the analysis of source brain activity not objective, but also hard to generalize on big studies. The second contribution is to automatically estimate this hyperparameter under some conditions, which increase the objectivity of the solvers. However, these state-of-the-art solvers have a main problem that their source localization solver gives one solution, and does not allow for any uncertainty quantification. We investigated this question by studying new techniques as done by a Bayesian community involving Markov Chain Monte Carlo (MCMC) methods. It allows us to obtain uncertainty maps over source localization estimation, which is primordial for a clinical study, e.g. epileptic activity. The last main contribution is to have a complete comparison of state-of-the-art solvers on phantom dataset. Phantom is an artificial object that mimics the brain activity based on theoretical description and produces realistic data corresponding to complex spatio-temporal current sources. In other words, all solvers have been tested on an almost real dataset with a known ground truth for a real validation
Thouvenin, Pierre-Antoine. "Modeling spatial and temporal variabilities in hyperspectral image unmixing". Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19258/1/THOUVENIN_PierreAntoine.pdf.
Texto completoSuparman, Suparman. "Problèmes de choix de modèles par simulation de type Monte Carlo par chaînes de Markov à sauts réversibles". Toulouse 3, 2003. http://www.theses.fr/2003TOU30005.
Texto completoAltaleb, Anas. "Méthodes d'échantillonnage par mélanges et algorithmes MCMC". Rouen, 1999. http://www.theses.fr/1999ROUES034.
Texto completoGbedo, Yémalin Gabin. "Les techniques Monte Carlo par chaînes de Markov appliquées à la détermination des distributions de partons". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY059/document.
Texto completoWe have developed a new approach to determine parton distribution functions and quantify their experimental uncertainties, based on Markov Chain Monte Carlo methods.The main interest devoted to such a study is that we can replace the standard χ 2 MINUIT minimization by procedures grounded on Statistical Methods, and on Bayesian inference in particular, thus offering additional insight into the rich field of PDFs determination.After reviewing these Markov chain Monte Carlo techniques, we introduce the algorithm we have chosen to implement – namely Hybrid (or Hamiltonian) Monte Carlo. This algorithm, initially developed for lattice quantum chromodynamique, turns out to be very interesting when applied to parton distribution functions determination by global analyses ; we have shown that it allows to circumvent the technical difficulties due to the high dimensionality of the problem, in particular concerning the acceptance rate. The feasibility study performed and presented in this thesis, indicates that Markov chain Monte Carlo method can successfully be applied to the extraction of PDFs and of their experimental uncertainties
Albert, Isabelle. "Inférence bayesienne par les methodes de Monte Carlo par chaînes de Markov et arbres de régression pour l'analyse statistique des données corrélées". Paris 11, 1998. http://www.theses.fr/1998PA11T020.
Texto completoDelescluse, Matthieu. "Une approche Monte Carlo par Chaînes de Markov pour la classification des potentiels d'action. Application à l'étude des corrélations d'activité des cellules de Purkinje". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011123.
Texto completoCette méthode de spike-sorting a fait l'objet d'une validation expérimentale sur des populations de cellules de Purkinje (PCs), dans les tranches de cervelet de rat. Par ailleurs, l'étude des trains de PAs de ces cellules fournis par le spike-sorting, n'a pas révélé de corrélations temporelles significatives en régime spontané, en dépit de l'existence d'une inhibition commune par les interneurones de la couche moléculaire et d'une inhibition directe de PC à PC. Des simulations ont montré que l'influence de ces inhibitions sur les relations temporelles entre les trains de PCs était trop faible pour pouvoir être détectée par nos méthodes d'analyse de corrélations. Les codes élaborés pour l'analyse des trains de PAs sont également disponibles sous la forme d'un second logiciel libre.
Delescluse, Matthieu. "Une approche Monte Carlo par chaînes de Markov pour la classification des potentiels d' action : application à l' étude des corrélations d' activité des cellules de Purkinje". Paris 6, 2005. http://www.theses.fr/2005PA066493.
Texto completoSpinelli, Marta. "Cosmological parameter estimation with the Planck satellite data : from the construction of a likelihood to neutrino properties". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112241/document.
Texto completoThe cosmic microwave background (CMB), relic of the hot Big-Bang, carries the traces of both the rich structure formation of the late time epochs and the energetic early phases of the universe.The Planck satellite provided, from 2009 to 2013, high-quality measurements of the anisotropies of the CMB. These are used in this thesis to determine the parameters of the standard cosmological model and of the extension concerning the neutrino sector. The construction of an high-l Planck likelihood is detailed. This involves a masking strategy that deals in particular with the contamination from thermal emission of the Galaxy. The residual foregrounds are treated directly at the power spectrum level relying on physically motivated templates based on Planck studies.The statistical methods needed to extract the cosmological parameters in the comparison between models and data are described, both the Bayesian Monte Carlo Markov Chain techniques and the frequentist profile likelihood. Results on cosmological parameters are presented using Planck data alone and in combination with the small scale data from the ground based CMB experiment ACT and SPT, the Baryon Acoustic Oscillation and the Supernovae. Constraints on the absolute scale of neutrino masses and of the number of effective neutrino are also discussed
Bӑrbos, Andrei-Cristian. "Efficient high-dimension gaussian sampling based on matrix splitting : application to bayesian Inversion". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0002/document.
Texto completoThe thesis deals with the problem of high-dimensional Gaussian sampling.Such a problem arises for example in Bayesian inverse problems in imaging where the number of variables easily reaches an order of 106_109. The complexity of the sampling problem is inherently linked to the structure of the covariance matrix. Different solutions to tackle this problem have already been proposed among which we emphasizethe Hogwild algorithm which runs local Gibbs sampling updates in parallel with periodic global synchronisation.Our algorithm makes use of the connection between a class of iterative samplers and iterative solvers for systems of linear equations. It does not target the required Gaussian distribution, instead it targets an approximate distribution. However, we are able to control how far off the approximate distribution is with respect to the required one by means of asingle tuning parameter.We first compare the proposed sampling algorithm with the Gibbs and Hogwild algorithms on moderately sized problems for different target distributions. Our algorithm manages to out perform the Gibbs and Hogwild algorithms in most of the cases. Let us note that the performances of our algorithm are dependent on the tuning parameter.We then compare the proposed algorithm with the Hogwild algorithm on a large scalereal application, namely image deconvolution-interpolation. The proposed algorithm enables us to obtain good results, whereas the Hogwild algorithm fails to converge. Let us note that for small values of the tuning parameter our algorithm fails to converge as well.Not with standing, a suitably chosen value for the tuning parameter enables our proposed sampler to converge and to deliver good results
Capítulos de libros sobre el tema "MCMC, Méthode de Monte-Carlo par chaînes de Markov"
Del Moral, Pierre y Christelle Vergé. "Méthodes de Monte Carlo par Chaînes de Markov (MCMC)". En Mathématiques et Applications, 147–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_6.
Texto completo