Siga este enlace para ver otros tipos de publicaciones sobre el tema: Maximal curves.

Artículos de revistas sobre el tema "Maximal curves"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Maximal curves".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Aguglia, Angela, Gábor Korchmáros y Fernando Torres. "Plane maximal curves". Acta Arithmetica 98, n.º 2 (2001): 165–79. http://dx.doi.org/10.4064/aa98-2-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Fuhrmann, Rainer, Arnaldo Garcia y Fernando Torres. "On Maximal Curves". Journal of Number Theory 67, n.º 1 (noviembre de 1997): 29–51. http://dx.doi.org/10.1006/jnth.1997.2148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Çakçak, Emrah y Ferruh Özbudak. "Curves related to Coulter's maximal curves". Finite Fields and Their Applications 14, n.º 1 (enero de 2008): 209–20. http://dx.doi.org/10.1016/j.ffa.2006.10.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Giulietti, Massimo, Luciane Quoos y Giovanni Zini. "Maximal curves from subcovers of the GK-curve". Journal of Pure and Applied Algebra 220, n.º 10 (octubre de 2016): 3372–83. http://dx.doi.org/10.1016/j.jpaa.2016.04.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rzymowski, Witold y Adam Stachura. "Curves bounding maximal area". Nonlinear Analysis: Theory, Methods & Applications 20, n.º 11 (junio de 1993): 1369–72. http://dx.doi.org/10.1016/0362-546x(93)90131-b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Oliveira, Paulo César y Fernando Torres. "On space maximal curves". Revista Colombiana de Matemáticas 53, supl (11 de diciembre de 2019): 223–35. http://dx.doi.org/10.15446/recolma.v53nsupl.84089.

Texto completo
Resumen
Any maximal curve X is equipped with an intrinsic embedding π: X → Pr which reveal outstanding properties of the curve. By dealing with the contact divisors of the curve π(X) and tangent lines, in this paper we investigate the first positive element that the Weierstrass semigroup at rational points can have whenever r = 3 and π(X) is contained in a cubic surface.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Oka, Mutsuo. "On Fermat curves and maximal nodal curves". Michigan Mathematical Journal 53, n.º 2 (agosto de 2005): 459–77. http://dx.doi.org/10.1307/mmj/1123090779.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Nie, Menglong. "Zeta functions of trinomial curves and maximal curves". Finite Fields and Their Applications 39 (mayo de 2016): 52–82. http://dx.doi.org/10.1016/j.ffa.2016.01.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nagel, Alexander, James Vance, Stephen Wainger y David Weinberg. "Maximal functions for convex curves". Duke Mathematical Journal 52, n.º 3 (septiembre de 1985): 715–22. http://dx.doi.org/10.1215/s0012-7094-85-05237-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

CAUBERGH, MAGDALENA y FREDDY DUMORTIER. "Algebraic curves of maximal cyclicity". Mathematical Proceedings of the Cambridge Philosophical Society 140, n.º 01 (11 de enero de 2006): 47. http://dx.doi.org/10.1017/s0305004105008807.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Abdón, Miriam, Juscelino Bezerra y Luciane Quoos. "Further examples of maximal curves". Journal of Pure and Applied Algebra 213, n.º 6 (junio de 2009): 1192–96. http://dx.doi.org/10.1016/j.jpaa.2008.11.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Aguglia, A., L. Giuzzi y G. Korchmáros. "Algebraic curves and maximal arcs". Journal of Algebraic Combinatorics 28, n.º 4 (24 de enero de 2008): 531–44. http://dx.doi.org/10.1007/s10801-008-0122-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

DIMCA, ALEXANDRU. "Freeness versus maximal global Tjurina number for plane curves". Mathematical Proceedings of the Cambridge Philosophical Society 163, n.º 1 (21 de septiembre de 2016): 161–72. http://dx.doi.org/10.1017/s0305004116000803.

Texto completo
Resumen
AbstractWe give a characterisation of nearly free plane curves in terms of their global Tjurina numbers, similar to the characterisation of free curves as curves with a maximal Tjurina number, given by A. A. du Plessis and C.T.C. Wall. It is also shown that an irreducible plane curve having a 1-dimensional symmetry is nearly free. A new numerical characterisation of free curves and a simple characterisation of nearly free curves in terms of their syzygies conclude this paper.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Bak, Jong-Guk. "Weighted Lacunary Maximal Functions on Curves". Canadian Mathematical Bulletin 38, n.º 3 (1 de septiembre de 1995): 271–77. http://dx.doi.org/10.4153/cmb-1995-040-3.

Texto completo
Resumen
AbstractLet γ(t) = (t, t2,..., tn) + a be a curve in Rn, where n ≥ 2 and a ∊ Rn. We prove LP-Lq estimates for the weighted lacunary maximal function, related to this curve, defined byIf n = 2 or 3 our results are (nearly) sharp.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Garcia, Arnaldo y Henning Stichtenoth. "On Chebyshev polynomials and maximal curves". Acta Arithmetica 90, n.º 4 (1999): 301–11. http://dx.doi.org/10.4064/aa-90-4-301-311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Jin, Lingfei. "Quantum Stabilizer Codes From Maximal Curves". IEEE Transactions on Information Theory 60, n.º 1 (enero de 2014): 313–16. http://dx.doi.org/10.1109/tit.2013.2287694.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Beelen, Peter y Maria Montanucci. "A new family of maximal curves". Journal of the London Mathematical Society 98, n.º 3 (19 de junio de 2018): 573–92. http://dx.doi.org/10.1112/jlms.12144.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Garcia, Arnaldo y Saeed Tafazolian. "Certain maximal curves and Cartier operators". Acta Arithmetica 135, n.º 3 (2008): 199–218. http://dx.doi.org/10.4064/aa135-3-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Cornelissen, Gunther y Fumiharu Kato. "Mumford curves with maximal automorphism group". Proceedings of the American Mathematical Society 132, n.º 7 (30 de enero de 2004): 1937–41. http://dx.doi.org/10.1090/s0002-9939-04-07379-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Tafazolian, Saeed y Fernando Torres. "A note on certain maximal curves". Communications in Algebra 45, n.º 2 (7 de octubre de 2016): 764–73. http://dx.doi.org/10.1080/00927872.2016.1175460.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kodama, Tetsuo, Jaap Top y Tadashi Washio. "Maximal hyperelliptic curves of genus three". Finite Fields and Their Applications 15, n.º 3 (junio de 2009): 392–403. http://dx.doi.org/10.1016/j.ffa.2009.02.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Bernal-González, L., M. C. Calderón-Moreno y J. A. Prado-Bassas. "Maximal cluster sets along arbitrary curves". Journal of Approximation Theory 129, n.º 2 (agosto de 2004): 207–16. http://dx.doi.org/10.1016/j.jat.2004.06.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Abe, K. y M. A. Magid. "Complex analytic curves and maximal surfaces". Monatshefte f�r Mathematik 108, n.º 4 (diciembre de 1989): 255–76. http://dx.doi.org/10.1007/bf01501129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Tafazolian, Saeed. "A family of maximal hyperelliptic curves". Journal of Pure and Applied Algebra 216, n.º 7 (julio de 2012): 1528–32. http://dx.doi.org/10.1016/j.jpaa.2012.01.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

J. Jerónimo-Castro y C. Yee-Romero. "Maximal Isoptic Chords of Convex Curves". American Mathematical Monthly 123, n.º 8 (2016): 817. http://dx.doi.org/10.4169/amer.math.monthly.123.8.817.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Brodmann, Markus y Peter Schenzel. "On projective curves of maximal regularity". Mathematische Zeitschrift 244, n.º 2 (junio de 2003): 271–89. http://dx.doi.org/10.1007/s00209-003-0496-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Carral, M., D. Rotillon y A. Thiong Ly. "Codes defined from some maximal curves". Journal of Pure and Applied Algebra 67, n.º 3 (noviembre de 1990): 247–57. http://dx.doi.org/10.1016/0022-4049(90)90046-k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Abd�n, Miriam y Fernando Torres. "On maximal curves in characteristic two". manuscripta mathematica 99, n.º 1 (1 de mayo de 1999): 39–53. http://dx.doi.org/10.1007/s002290050161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Mendoza, Erik A. R. y Luciane Quoos. "Explicit equations for maximal curves as subcovers of the BM curve". Finite Fields and Their Applications 77 (enero de 2022): 101945. http://dx.doi.org/10.1016/j.ffa.2021.101945.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Giulietti, Massimo, Maria Montanucci y Giovanni Zini. "On maximal curves that are not quotients of the Hermitian curve". Finite Fields and Their Applications 41 (septiembre de 2016): 72–88. http://dx.doi.org/10.1016/j.ffa.2016.05.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Dloussky, Georges. "Non Kählerian surfaces with a cycle of rational curves". Complex Manifolds 8, n.º 1 (1 de enero de 2021): 208–22. http://dx.doi.org/10.1515/coma-2020-0114.

Texto completo
Resumen
Abstract Let S be a compact complex surface in class VII0 + containing a cycle of rational curves C = ∑Dj . Let D = C + A be the maximal connected divisor containing C. If there is another connected component of curves C ′ then C ′ is a cycle of rational curves, A = 0 and S is a Inoue-Hirzebruch surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Dj of the cycle and for each curve Dj of the cycle there at most one chain which meets Dj . In other words, we do not prove the existence of curves other those of the cycle C, but if some other curves exist the maximal divisor looks like the maximal divisor of a Kato surface with perhaps missing curves. The proof of this topological result is an application of Donaldson theorem on trivialization of the intersection form and of deformation theory. We apply this result to show that a twisted logarithmic 1-form has a trivial vanishing divisor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Skabelund, Dane C. "New maximal curves as ray class fields over Deligne-Lusztig curves". Proceedings of the American Mathematical Society 146, n.º 2 (30 de agosto de 2017): 525–40. http://dx.doi.org/10.1090/proc/13753.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Park, Heesang. "CURVES OF MAXIMAL GENUS ON SURFACE SCROLLS". Journal of the Chungcheong Mathematical Society 27, n.º 4 (15 de noviembre de 2014): 563–69. http://dx.doi.org/10.14403/jcms.2014.27.4.563.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Calderini, Marco y Giorgio Faina. "Generalized Algebraic Geometric Codes From Maximal Curves". IEEE Transactions on Information Theory 58, n.º 4 (abril de 2012): 2386–96. http://dx.doi.org/10.1109/tit.2011.2177068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Abdón, Miriam y Arnaldo Garcia. "On a characterization of certain maximal curves". Finite Fields and Their Applications 10, n.º 2 (abril de 2004): 133–58. http://dx.doi.org/10.1016/j.ffa.2003.06.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Tafazolian, Saeed. "A note on certain maximal hyperelliptic curves". Finite Fields and Their Applications 18, n.º 5 (septiembre de 2012): 1013–16. http://dx.doi.org/10.1016/j.ffa.2012.07.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Anbar, Nurdagül y Wilfried Meidl. "Quadratic functions and maximal Artin–Schreier curves". Finite Fields and Their Applications 30 (noviembre de 2014): 49–71. http://dx.doi.org/10.1016/j.ffa.2014.05.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kazemifard, Ahmad, Saeed Tafazolian y Fernando Torres. "On maximal curves related to Chebyshev polynomials". Finite Fields and Their Applications 52 (julio de 2018): 200–213. http://dx.doi.org/10.1016/j.ffa.2018.04.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Liu, XiaoLei y ShengLi Tan. "Families of hyperelliptic curves with maximal slopes". Science China Mathematics 56, n.º 9 (11 de mayo de 2013): 1743–50. http://dx.doi.org/10.1007/s11425-013-4634-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Fanali, Stefania y Massimo Giulietti. "On maximal curves with Frobenius dimension 3". Designs, Codes and Cryptography 53, n.º 3 (27 de mayo de 2009): 165–74. http://dx.doi.org/10.1007/s10623-009-9302-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Fanali, Stefania y Massimo Giulietti. "On some open problems on maximal curves". Designs, Codes and Cryptography 56, n.º 2-3 (13 de abril de 2010): 131–39. http://dx.doi.org/10.1007/s10623-010-9389-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Garcia, Arnaldo y Saeed Tafazolian. "On additive polynomials and certain maximal curves". Journal of Pure and Applied Algebra 212, n.º 11 (noviembre de 2008): 2513–21. http://dx.doi.org/10.1016/j.jpaa.2008.03.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Solá Conde, Luis y Matei Toma. "Maximal rationally connected fibrations and movable curves". Annales de l’institut Fourier 59, n.º 6 (2009): 2359–69. http://dx.doi.org/10.5802/aif.2493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Reid, Les y Leslie G. Roberts. "Maximal and Cohen–Macaulay projective monomial curves". Journal of Algebra 307, n.º 1 (enero de 2007): 409–23. http://dx.doi.org/10.1016/j.jalgebra.2006.04.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Dutta, Yajnaseni y Daniel Huybrechts. "Maximal variation of curves on K3 surfaces". Tunisian Journal of Mathematics 4, n.º 3 (9 de noviembre de 2022): 443–64. http://dx.doi.org/10.2140/tunis.2022.4.443.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Duursma, Iwan y Kit-Ho Mak. "On maximal curves which are not Galois subcovers of the Hermitian curve". Bulletin of the Brazilian Mathematical Society, New Series 43, n.º 3 (septiembre de 2012): 453–65. http://dx.doi.org/10.1007/s00574-012-0022-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Babb, T. G. y J. R. Rodarte. "Estimation of ventilatory capacity during submaximal exercise". Journal of Applied Physiology 74, n.º 4 (1 de abril de 1993): 2016–22. http://dx.doi.org/10.1152/jappl.1993.74.4.2016.

Texto completo
Resumen
There is presently no precise way to determine ventilatory capacity for a given individual during exercise; however, this information would be helpful in evaluating ventilatory reserve during exercise. Using schematic representations of maximal expiratory flow-volume curves and individual maximal expiratory flow-volume curves from four subjects, we describe a technique for estimating ventilatory capacity. In these subjects, we measured maximal expiratory flow-volume loops at rest and tidal flow-volume loops and inspiratory capacity (IC) during submaximal cycle ergometry. We also compared minute ventilation (VE) during submaximal exercise with calculated ventilatory maxima (VEmaxCal) and with maximal voluntary ventilation (MVV) to estimate ventilatory reserve. Using the schematic flow-volume curves, we demonstrated the theoretical effect of maximal expiratory flow and lung volume on ventilatory capacity and breathing pattern. In the subjects, we observed that the estimation of ventilatory reserve with use of VE/VEmaxCal was most helpful in indicating when subjects were approaching maximal expiratory flow over a large portion of tidal volume, especially at submaximal exercise levels where VE/VEmaxCal and VE/MVV differed the most. These data suggest that this technique may be useful in estimating ventilatory capacity, which could then be used to evaluate ventilatory reserve during exercise.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Boltnev, Y. F., S. A. Novoselov y V. A. Osipov. "On construction of maximal genus 3 hyperelliptic curves". Prikladnaya diskretnaya matematika. Prilozhenie, n.º 14 (1 de septiembre de 2021): 24–30. http://dx.doi.org/10.17223/2226308x/14/1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Jones, Nathan. "Pairs of elliptic curves with maximal Galois representations". Journal of Number Theory 133, n.º 10 (octubre de 2013): 3381–93. http://dx.doi.org/10.1016/j.jnt.2013.03.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Larson, Eric. "The Maximal Rank Conjecture for sections of curves". Journal of Algebra 555 (agosto de 2020): 223–45. http://dx.doi.org/10.1016/j.jalgebra.2020.03.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía