Índice
Literatura académica sobre el tema "Matrice décellularisée"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Matrice décellularisée".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Matrice décellularisée"
Bachy, Manon, Ines Sherifi, Raphael Bardonnet, Thierry Hoc, Hervé Petite y Didier Hannouche. "Développement d’une matrice collagénique décellularisée pour la réparation du ligament croisé antérieur". Revue de Chirurgie Orthopédique et Traumatologique 97, n.º 7 (noviembre de 2011): S356—S357. http://dx.doi.org/10.1016/j.rcot.2011.08.290.
Texto completoGouas, Laetitia, Gaëlle Salaün, Eléonore Eymard-Pierre, Céline Pebrel-Richard, Delphine Voisin, Carole Goumy, Emmanuel Moreau y Andrei Tchirkov. "Matrice extra-cellulaire décellularisée de type trisomie 21 : impacts sur la prolifération et la morphologie cellulaire d’une lignée d’adénocarcinome mammaire triple-négatif". Morphologie 107, n.º 359 (diciembre de 2023): 100626. http://dx.doi.org/10.1016/j.morpho.2023.100626.
Texto completoTesis sobre el tema "Matrice décellularisée"
Lesieur, Romane. "Ingénierie tissulaire de l'oesophage". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0020.
Texto completoUpon removal of a portion of the esophagus, the restoration of the digestive continuity involves the surgical creation of an intrathoracic esophagogastric anastomosis. However, postoperative complications such as lung impairments, fistulas, strictures, graft necrosis, and gastroesophageal reflux are reported. The enhancement of surgical procedures for esophageal replacement has made promising progress by the development of a substitute through tissue engineering that utilizes a decellularized biological esophageal matrix (DEM). The primary objective of this study was to optimize the design of porcine DEM and characterize its biological and mechanical properties. The secondary objective was to cellularize DEM using readily available immune-privileged human mesenchymal stromal cells derived from Wharton's jelly (hMSCs-WJ).Esophageal decellularization was performed according to a protocol based on the dynamic perfusion of chemical and enzymatic solutions through the organ lumen. Histological analysis and residual DNA quantification of the DEM were conducted to determine the efficiency of the decellularization protocol. The ultrastructure of the DEM was analyzed using immunohistochemical (IHC) labeling, and the composition of the extracellular matrix (ECM) protein content was described by mass spectrometry. In-vitro cytotoxicity tests of DEM were conducted following ISO 10993-5 standards. The evaluation of suture retention strength, tensile strength, and bursting pressure of DEM aimed to describe the mechanical behavior of the substitute for clinical use.hMSCs-WJ used for DEM cellularization were extracted from human umbilical cords, and their flow cytometry profiling confirmed the purity of the cell population. The immune response of hMSCs-WJ was quantified after co-culture with peripheral blood mononuclear cells (PBMCs). PBMCs phenotyping assessed the expression of immune markers in contact with hMSCs-WJ, while enzyme-linked immunosorbent assay (ELISA) quantified cytokine release. The proposed DEM cellularization strategy involved the development of cell sheets from hMSCs-WJ. The validation of the cell sheet production protocol involved the characterization of the cellular phenotype by IHC analysis, and the mechanical study of the sheets measured their resistance to perforation.The absence of cellular content and residual DNA quantification in DEM confirmed the efficacy of decellularization according to current validation criteria. The ultrastructure and biological components of the ECM were preserved, and proteomic analysis highlighted protein complexity. Decellularization treatment did not induce DEM toxicity, and the mechanical behavior of DEM was suitable for its use as an esophageal substitute.Culturing hMSCs-WJ as cell sheets promoted the cellularization of the DEM. Once seeded, the sheets retained their cellular phenotype and immune-privileged characteristics. In-vitro tissue remodeling was visible, along with the formation of a new ECM produced by hMSCs-WJ.Characterization of the obtained DEM offered biological complexity and favorable mechanical behavior for its use as an esophageal substitute. DEM was cellularizable with hMSCs-WJ cell sheets, potentially promoting tissue integration and remodeling
Trignol, Aurélie. "The extracellular matrix as a biomaterial to optimize skeletal muscle regeneration". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1029.
Texto completoSkeletal muscle exhibits high capacity for regeneration after an injury that relies on resident stem cells. Muscle regeneration is tightly regulated by both the immune response and other resident cells, as well as by cues from the local extracellular matrix (ECM), contributing to a coordinated repair process. Muscle ECM is a network of structural macromolecules with a large majority of collagens and trophic molecules such as glycosaminoglycans (GAGs). In the skeletal muscle tissue, ECM was overlooked due to its complex organization making investigations difficult. Muscle regenerative ability can be overtaken in large muscle wasting, such as in volumetric muscle loss (VML), leading to fibrosis formation and chronic inflammation. This type of injury predominantly occurs in traumatology and in war-wounded patients, with functional disability despite an optimal treatment. The use of biomaterials could provide the biochemical and physical cues that are missing in this pathologic repair. In this work we have focused on obtaining a biomaterial composed of skeletal muscle ECM. We have tested several decellularization protocols both to preserve the three-dimensional architecture of the muscle ECM and to completely remove cell components in order to avoid a deleterious immune response after implantation. However, the protocol did not allow the preservation of trophic molecules such as GAGs, in the scaffold.“ReGenerating Agents” (RGTA®) are functionally analogous of GAGs with a crucial property to resist enzymatic degradation. They function to restore a proper microenvironment for tissue healing with already a clinical application in skin and corneal repair. We have explored the effects of RGTA® in muscle regeneration using an in vivo model in mouse. At early time of regeneration (day 8), we performed histologic analysis. We showed that regenerating myofibers contained more nuclei in the treated animals, in favor of an increase of progenitor fusion, which has been validated in vitro in myogenic cultures. The number of capillaries was higher in favor of a better angiogenesis. Lipid droplets, a marker of impaired regeneration, were reduced by RGTA® administration. At later time of regeneration (day 28), capillary number was still improved in favor of a durable effect of RGTA® on angiogenesis. RGTA® could be incorporated into biomaterials and are particularly resistant in an inflammatory environment, such as that occurring after a VML injury. Chemokines and growth factors could also be added in ECM-based scaffolds to promote the migration of progenitors that are essential for myofiber neoformation. Therapeutic efficacy of these optimized biomaterials will require to be evaluated in an in vivo model of VML
Ben, Hamouda Selma. "Mise au point d’un protocole de recellularisation d’une matrice bronchique équine décellularisée". Thèse, 2018. http://hdl.handle.net/1866/21864.
Texto completo