Tesis sobre el tema "Matières plastiques biodégradables – Biodégradation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 27 mejores tesis para su investigación sobre el tema "Matières plastiques biodégradables – Biodégradation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Cazaudehore, Guillaume. "Méthanisation des plastiques biodégradables : performances et diversité microbienne". Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3002.
Texto completoGrowing concern regarding non-biodegradable plastics and the impact of these materials on the environment has promoted interest in biodegradable plastics. Biodegradable plastics offer additional waste management options (e.g., anaerobic digestion or composting) over conventional plastics. However, the treatment of biodegradable plastics under anaerobic digestion is only in its infancy. Therefore, the aim of this thesis was to investigate the fate of biodegradable plastics in anaerobic digestion systems and the microorganisms involved in the plastic conversion to methane.For this purpose, batch anaerobic digestion experiments were performed on the main biodegradable polymers and on three commercial blends of biodegradable polymer, under both mesophilic and thermophilic conditions. Only Poly(3-hydroxybutyrate) (PHB) and Thermoplastic starch (TPS) exhibited rapid (25-50 days) and important (57-80.3% and 80.2-82.6%, respectively) conversion to methane under both mesophilic and thermophilic condition. Methane production rates from poly(lactic acid) (PLA) was very low under mesophilic condition, to such an extent that 500 days were required to reach the ultimate methane production, corresponding to a PLA conversion to methane of 74.7-80.3%. Methane production rate from PLA was greatly enhanced under thermophilic condition since only 60 to 100 days were required to reach the same ultimate methane production. Lactate-utilizing bacteria such as Tepidimicrobium, Moorella and Tepidanaerobacter were revealed to be important during the thermophilic digestion of PLA. Similarly, starch-degrading bacteria (from Clostridium genus) were highlighted during TPS digestion at 38 °C and 58°C. Previously known PHB degraders (i.e., Enterobacter, Ilyobacter delafieldii and Cupriavidus) were observed during mesophilic and thermophilic AD of PHB. The low biodegradation rate of most of the biodegradable plastics in mesophilic anaerobic digesters is a major hindrance to their introduction at industrial scale. Thermal (at 120 or 150 °C) and thermo-alkaline (at 70°C or 90 °C with calcium hydroxide addition) pretreatments were successfully implemented on PLA. These strategies were tested on PLA, which is one of the main biodegradable polymer, accounting for 25% of the biodegradable plastic production. PLA pretreated with these treatments, achieved biodegradation yield of 73% after 15-20 days; a similar biodegradation yield was obtained after 500 days for untreated PLA.PHB and PLA are among the most studied polymer to replace conventional plastics. Finally, the stability and performances of the co-digestion of these plastics (with and without PLA pretreatment) with food wastes fed semi-continuously under mesophilic conditions was investigated. The addition of biodegradable plastics resulted in a more stable process (in comparison with stand-alone biowastes reactor) and no negative effects could be detected. PHB was estimated to be fully biodegraded in the reactors. By contrast, PLA was accumulating in the reactor, and an average biodegradation of 47.6% was estimated during the third hydraulic retention time. Thermo-alkaline pretreatment of PLA improved the biodegradation yield of PLA to 77.5%. The identification of specific microorganisms implicated in the biodegradable plastic degradation was complicated; the majority of the microorganisms correlated with the methane production from reactors co-digesting PLA and PHB were implicated in the anaerobic digestion of the biowaste, which can be explained by the low proportion of biodegradable plastics introduced
Longieras, Antoine. "Mise au point d'un milieu solide inerte pour l'étude de la biodégradation des polymères dans le compost". Reims, 2005. http://theses.univ-reims.fr/exl-doc/GED00000336.pdf.
Texto completoThe purpose of our research was to set up a vermiculite based inert solid medium which allows us to enhance reproductibility of biodegradation tests in compost, to simulate degradation of materials in compost and to establish carbon balance. In a first step, wheat starch has been used as a model biodegradable polymer and we have shown that degradation of this product in an inert solid medium was similar to the degradation in compost. A carbon balance has been established with a satisfactory accuracy. In a second step, we have applied the method to the degradation of synthetic biodegradable polymer such as PLA of PHB. A carbon extraction protocol based on PLA hydrolysis in NaOH has been proposed and we have followed the evolution of the various terms of the PLA degradation carbon balance, Biomass, carbon dioxide, soluble by-products and remaining polymer. A different protocol has been proposed of PHB based on biomass oxidation but it still needs some improvement. This work constitutes a first approach in polymer inert solid media degradation tests and it highlights the fundamental steps which further work should be focused on
Divers, Thomas. "Modification chimique de l'amidon par l'acide formique à l'usage d'additif pour polymère biodégradable". Lorient, 2005. http://www.theses.fr/2005LORIS053.
Texto completoThis thesis was dedicated to the elaboration of a starch-based biodegradable plastic material. Starch is quite attractive for such an application, however its intrinsic properties are a drawback for the development of these materials. Among the available methods to overcome this problem, we chose to investigate the chemical modification of starch using formic acid. We firstly studied O-Formylation of starch. We assessed the influence of various reaction parameters on the physico-chemical and structural properties of starch. We then studied
Peyrat, Eric. "Nouveau composite biodégradable obtenu à partir de maïs plante entière : étude du procédé de transformation thermo-mécano-chimique en extrudeur bi-vis et de la mise en forme par injection-moulage". Toulouse, INPT, 2000. http://www.theses.fr/2000INPT100G.
Texto completoBidoret, Aurélie. "Protection par encapsulation de l’enzyme lors de l’incorporation dans des plastiques biodégradables". Nantes, 2016. http://www.theses.fr/2016NANT079F.
Texto completoThe development of biodegradable plastics by incorporating of enzymes is one of the potential solutions to the growing problems of domestic and industrial wastes. The objective of this thesis is to develop four existing encapsulation methods providing protection for the enzymes used in biodegradable plastics. The first method consist of forming polylacticacid (PLA) microspheres by using encapsulation by solvent evaporation
Abdillahi, Houssein. "Propriétes barrière et mécaniques d'agromatériaux thermoplastiques à base de farine de blé et de polyesters biosources et biodégradables". Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0027.
Texto completoFrom basic and essential to unnecessary and optional consumer products, packaging, particularly plastic, is today an indispensable part of our daily life. Its extensive use in the food industry for a single use and for a short shelf-life encourages us today to move towards new renewable and biodegradable materials with similar characteristics than their counterparts from fossil resources. Biopolymers and biopolyesters blends can be a good alternative. Within the framework of this present work, wheat flour, thermoplasticised by glycerol and water, and biobased and biodegradable polyesters such as PLA and/or PHB, were blended using an industrial twin screw extruder and were injection-molded into thermoplastic materials. Thermal, dynamic thermomechanical, morphological, mechanical and barriers properties of these new materials were studied. Citric acid was used as a compatibilizer to improve the interface starch/PLA. The different investigations have allowed us to develop various types of formulations, with mechanical characteristics and barrier properties to water vapor, very attractive for manufacturing plastic food packaging which can be used for meats or cheeses. Food contact suitability and biodegradability of thermoplasticised wheat flour/polyester materials have also studied
Colak, Basak Yilin. "Utilisation du caséinate de sodium pour la fabrication de films actifs pour l’emballage alimentaire : étude des propriétés barrières aux gaz, de l’activité antimicrobienne et de la biodégradabilité". Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4018/document.
Texto completoBecause food market becomes international, consumers are changing their habits and they are more concerned about food security and environmental issues, there are driving forces for the development of edible/biodegradable antimicrobial packaging films. However, fabrication process (solution-casting) of these kinds of films isn’t always suitable for a continuous industrial big production. The present study demonstrates the suitability of sodium caseinate based edible antimicrobial films to be fabricated by some conventional plastic transformation processes: twinscrew extrusion and blown-film extrusion. Thanks to the optimizations of elaboration parameters such as extrusion temperature, shear and plasticizer ratio, the materials incorporated with one of the following active agents: lysozyme, nisin or natamycin, partially kept their antimicrobial activity. Physical-chemical film characterization of films emphasized that the type of transformation process doesn’t have any influence on tensile or gas barrier properties. These properties are mainly affected by plasticizer type and content. Thus, sodium caseinate based edible antimicrobial films can be produced successfully by thermo-mechanical processes without losing good mechanical and gas barrier properties
Jacquin, Justine. "Ecotoxicologie microbienne des plastiques en mer : colonisation et biodégradation par la plastisphère". Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS104.pdf.
Texto completoNowadays, plastic waste has invaded all of the world's marine ecosystems, sparing no area. The global demand for plastic continues to grow year after year, despite its dramatic impact on the environment when plastic is left in nature. It is estimated that each year between 4.8 and 12.7 million tonnes of plastics end up in the oceans. This PhD aims and works fall within the framework of this environmental emergency, by making possible to better identify the bacterial biofilms attached to different plastics (the so called "plastisphere) and to better characterize the biodegradation process of certain polymers in the marine environment. The first stage, was to analyse the microbial diversity of samples taken during two expeditions (the Tara-Mediterranean expedition and Tara-Pacific) in order to characterize the biogeography of bacterial biofilms specific to plastics. The comparison between samples from the Pacific and the Mediterranean see allow to highlight an ecological niche on the surface of plastics distinct from the surrounding water. Niche which is clearly influenced by geography, explained mainly by temperature. The taxonomic study revealed a "core microbiome" dominated by a genus affiliated to the cyanobacteria and families (Rhodobacteraceae and flavobacteraceae) known to be colonizers of plastic in the marine environment. Then, the bacterial colonization on different polymers was studied in aquarium using uninterrupted circulation of seawater collected continuously from the Banyuls Bay. The biodegradation process was studied using an artificial environment without any other carbon source than the polymer in order to mimic the marine environment, and by following several experimental parameters (Bacterial production, respiration, loss of mass). In our study we observed during the growth phase of the biofilm no specific microbial communities related to the nature of the polymers. The biodegradation process has been demonstrated on certain polymers such as PHBV, Bioplast, Mater-Bi and cellulose, in particular due to the bacterial activity maintained throughout the incubation. Next, a strain Alteromonas sp., isolated from the mature biofilm of the PHBV allow us to explore its biodegradation capabilities. The analysis of the genome of Alteromonas sp. revealed the presence of 4 depolymerases, with 3 external and 1 internal, explaining its ability to degrade PHBV. The study of the genome also revealed two pathways for the PHA synthesis, one allowing the synthesis of PHASCL and the other of PHAMCL. Finally, the study of the biodegradation of PHBV by a natural consortium was done using isotopic labelling of the polymer. This experiment, coupled with metagenomic analysis, allowed the study of functional communities that can assimilate the carbon of the polymer. Thus, this PhD work enhanced the identification of the bacterial communities inhabiting the biofilms developed on the surface of polymers (biodegradable and non-degradable), and also to refine the characterization of the biodegradation process in the marine environment owing the use of various parameters such as the bacterial production, respiration, weight loss, monitoring of labeled carbon and microscopy. These studies are essential for a better understanding of the biodegradation process of plastics at sea and thus to propose adaptations to the standards methods governing the marine environment and currently not very representative
Jamal, Mounia. "Evaluation de la biodégradation et de l'écotoxicité des films de paillage agricole : étude comparative et modélisation des tests de (bio)dégradabilité". Le Mans, 2006. http://www.theses.fr/2006LEMA1004.
Texto completoEl, Aalam Samira. "Sélection, croissance en milieu biphasique liquide/liquide d'une population mixte : application à la biodégradation microbienne du styrène et l'acrylonitrile". Compiègne, 1993. http://www.theses.fr/1993COMPD587.
Texto completoMartin, Olivier. "Etude de la coextrusion de systèmes biodégradables à base d'amidon de blé plastifié". Reims, 2001. http://www.theses.fr/2001REIMS013.
Texto completoSharkawi, Tahmer. "Étude de facteurs susceptibles d'influencer la biofonctionnalité de nouvelles prothèses endovasculaires temporaires à base de polymère biorésorbable". Montpellier 1, 2007. http://www.theses.fr/2007MON13512.
Texto completoBelyamani, Imane. "Développement d'un matériau thermoplastique biodégradable et hydrosoluble à base d'une protéine du lait". Phd thesis, Université Jean Monnet - Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-00702749.
Texto completoCharlon, Sébastien. "Elaboration et caractérisation de nouveaux systèmes nanocomposites à propriétés de transport contrôlées. Impact d'un nouveau procédé de mise en oeuvre". Rouen, 2015. http://www.theses.fr/2015ROUES011.
Texto completoDuring the last decades, a waste-reduction program, specifically for plastic packaging, was promoted due to environmental drawbacks with the development of biodegradable polymers. However, barrier properties of these biodegradable materials must be often improved to be competitive with common polyolefins (PE, PP, PET, etc. ). In this objective, the incorporation of nanofillers using industrializable processes seems to be a promising approach. Indeed, the introduction of inorganic nanofillers like clays (montmorillonite) into a polymer matrix often increased barrier properties of the polymer matrix. In this study, composites were prepared from biodegradable matrices such as Poly(Putylene Succinate) (PBS) and Poly(Butylène Succinate-co-butylène Adipate) (PBSA) loaded with Cloisite Na+ or Cloisite 30B. An extrusion process was applied with the use of liquid water injection under high pressure and high temperature into thermo-moulding or extrusion-calandaring processes. Kinetic permeation revealed changes in barrier properties as function of the elaboration process or the polymer matrix used. These results were explained from structural charectirizations (DSC, XRD) and microscopy observations (TEM) in order to correlate barrier peoperties to the dispersion and exfoliationlevels of fillers into the polymer matrices, to the degrees of cristallinity and to the rigid amorphous fractions (RAF) of the bio-polymers
Amgoune, Abderrahmane. "New group 3 organometallic complexes for ring-opening polymerization of lactones and lactide". Rennes 1, 2006. http://www.theses.fr/2006REN1S036.
Texto completoGuidez, Adeline. "Polymères biodégradables compoundés par extrusion assistée eau : Optimisation du procédé et des propriétés d’usage du matériau". Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10187.
Texto completoWater-assisted extrusion is a method based on the conventional reactive extrusion. The feature of this method is the introduction of a water injection pump at the compression zone of the extruder machine. This process has already been proven in the nanocomposite formulation, usually based on polyamide (PA) matrix with clay nanofillers. The water acts as exfoliating thus allowing better dispersion of the clay within the matrix. A second role was observed, water would act as a plasticizer during extrusion limiting the material. In this context, water-assisted extrusion was studied using two different profile screw, where the second profile is an optimisation from the first. Polyamide 6 (PA6) was used as material reference in order to select new biodegradable polymers. Two polyesters, poly(butylene succinate) (PBS) and poly(butylene succinate adipate) (PBSA) have shown similar abilities comparared with PA6 extruded under water. After extrusion of the polymers with water injection, a limitation on the decrease in molecular weight was observed. Mechanical and rheological properties of PA6 were improved. Subsequently, an application of this method was conducted on the formulation of a PBS matrix composite based on two types of nanofillers clay in order to improve the mechanical properties of PBS and evaluate the water influence during the extrusion process according to the clay used
Philip, Léna. "Écologie microbienne associée à la biodégradabilité des plastiques en milieu marin". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS505.
Texto completoLimiting plastic pollution has become a priority to limit already existing impacts on natural ecosystems. Manufacturing of so-called biodegradable plastics is part of the solutions willing to limit this pollution. However, standard methods (ISO, AFNOR, ASTM…) validating plastics biodegradability in aquatic environments have been highly criticized in the scientific literature, especially for their lack of relevance towards the natural environment. This thesis aims at strengthening the knowledge on plastic biodegradability in aquatic environments and proposing new insights for improving the current standard methods, while focusing on bacterial communities associated to these plastic debris in natural environment, referred to as the “plastisphere”. The first part of this work focuses on the microbial communities associated to floating plastic debris on the river-sea continuum, thanks to an 8-month campaign on 9 European rivers (the Tara Microplastic mission, supported by the Tara Oceans foundation). Indeed, it is estimated that 80% of plastic debris found at sea are land-based, arriving at sea through the rivers. The taxonomic study of plastic-associated communities showed a clear distinction between plastisphere from sea and riverine samples (included pathogens). The second part of this work focuses on protocols for the evaluation of plastic biodegradability at sea. A miniaturized experimental design allowed to generate numerous experimental conditions and replicates to test the influence of test medium (natural or synthetic sea water), but also the bacterial inoculum diversity (sea water or natural bacterial biofilm) and its concentration (104, 105 and 106 cells per mL) on different polymer types (polyethylene-PE, polyhydroxyalkanoates-PHA and cellulose). Bacterial activities (respirometry, heterotrophic bacterial production), biodegradation products (oligomers) and nutrients concentration were monitored during 90 days of incubation. These experiments highlighted the relevance of using a preselected inoculum (1-month mature biofilm grown on the tested polymer) and to follow the possible nutrients limitations (nitrogen and phosphorus) for biodegradability testing in conditions close to the natural conditions. The third part of this work is an application of the testing method for the study of the marine biodegradability of 7 formulas of PHA exhibiting various chemical compositions and physical properties. Our tests indicate that PHA biodegradability is tightly related to the presence of hydroxybutyric acid monomers, which is the most widespread PHA monomer and also the most targeted by microbial enzymes responsible of their biodegradation. This PhD work contributes to a better understanding of microbial ecology related to plastic biodegradability at sea and paves the way for improving the standard methods for testing of marine plastic biodegradability
Deroiné, Morgan. "Étude du vieillissement de biopolymères en milieu marin". Thesis, Lorient, 2014. http://www.theses.fr/2014LORIS354/document.
Texto completoPollution of nature by plastics is a major environmental problem and better management of the lifetime of polymers is a major challenge for the future. In recent years, bio-based and biodegradable polymers, such as polylactide (PLA), or polyhydroxyalkanoates (PHA) have appeared as an alternative solution in order to solve these problems. One of the limits remains the relative lack of knowledge of their lifetime and degradation behaviour in aqueous environments, and more specifically in the marine environment. In this study natural and accelerated ageing tests were performed under several conditions, distilled water, filtered and renewed seawater and natural seawater, at different temperatures, in order to decouple enzymatic and hydrolytic mechanisms. The aim of this study is to establish a baseline on degradation mechanisms and kinetics, in order to make lifetime predictions of biopolymer behaviour in seawater.Degradation phenomena have been identified. Biodegradation tests were also performed in a marine environment by following the release of CO2. Then, lifetime predictions of the properties of these biopolymers at seawater temperature were made using two different approaches
Marin, Paul. "Synthèse et caractérisation de nouveaux amorceurs basés sur des complexes de métaux de transition bivalents : vers la synthèse de polyesters stéréoréguliers par polymérisation par ouverture de cycle". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066703/document.
Texto completoA large part of the plastic materials produced every year in the world are disposed in landfill, representing a serious menace for the environment. Since several decades, industrial and academic scientists are interested in the synthesis of biodegradable polyesters via the ring opening polymerization of biobased cyclic esters like lactide. Despite a large number of initiators described in the literature, several metals remains not well studied. The goals of this thesis were to synthetize and study the polymerization properties of new iron and cobalt (II) initiators with a trigonal bipyramidal geometry. The different initiators were active at room temperature and polymers with a large variety of tacticity were obtained depending on the steric hindrance of the pro-ligand and the metallic center used, with very good activity and in a controlled manner. Highly isotactic-rich PLA (Pm = 0,86-0,91) were obtained with iron (II) based initiators for the first time. Moreover, cobalt (II) initiators gave isotactic and heterotactic-rich PLA with moderate selectivity, constituting two new cases of stereoselectivity switch. These initiators constitute a good starting point for the development of new productive initiators for the stereoselective polymerization of rac-lactide based on non-toxic and abundant metals and easily accessible pro-ligands
Mangeon, Pastori Carine. "Valorisation des huiles colza / tournesol pour la production de bioplastiques". Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1002.
Texto completoPoly (3-hydroxyalkanoate)s (PHAs) are an alternative to petroleum-based plastics because of their biodegradability and their biocompatibility. However, the high production costs, the limited mechanical performance and the narrow processing window of PHAs have limited their development on a larger scale. It is therefore necessary to modify the PHAs in order to increase their properties and develop strategies to reduce their production costs to allow their use as replacement for conventional plastics. Among the raw materials derived from renewable resources, metropolitan rapeseed or sunflower oils are interesting candidates for the synthesis and chemical modification of PHAs because of their competitive cost, their bioavailability and their built-in functionalities. Thus, we aimed to reduce the cost productions of PHAs by using rapeseed oil and glycerol as cheap substrates. The strain, Haloferax mediterranei, has demonstrated its ability to biosynthesize a PHB92HV8. In addition, we have developed two approaches to improve the performance of PHAs: plasticization of PHAs by terpene molecules from plants and synthesis of semi-interpenetrating networks (semi-IPNs). The use of terpenes for the formulation of PHAs reduced the processing temperature of the polymer and increased its flexibility. The synthesis of a biobased semi-IPN is obtained by crosslinking sunflower oil and a trifunctional thiol, using the thiolene reaction, within a matrix of linear PHAs. The network improved the thermal stability of PHAs and increased their elongation at break of 2400%. Finally, new biobased materials were also produced from terpenes and vegetable oil, using a simple and "green" process. The resulting materials exhibited flexibility and elasticity with the ability to absorb and to release antibacterial and antifungal hydrophobic molecules such as the eugenol. Therefore, a wide range of bioplastics have been synthesized using vegetable oils, PHAs or a combination of both, with wide range of properties to compete with plastics derived from fossil resources
Belibel, Rima. "Synthèse et caractérisations de nouveaux polyesters biodégradables dérivés du poly (acide 3,3-diméthylmalique) comme revêtement prometteur de stents cardiovasculaires". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD065/document.
Texto completoWith the exception of bibliographic chapter, this thesis was written in the format of collection of articles with abstracts and discussions while comparing the results with other’s in the literature in the same research theme. This work is organized in three tasks: organic synthesis and stereochemistry of polymers, surface physicochemical properties and biological response and degradation study of polymers. The issue of this thesis is based on in-stent restenosis which represents the major complications of angioplasty with stent placement. Drug-eluting stents are currently the solution used for the restenosis treatment. These are metal stents coated with a polymer having a bioactive substance which is generally an antiproliferative agent. The polymer role is to create a protective barrier between the metal and the arterial wall. This barrier must improve the roughness and the chemical composition of the metallic stent, repair the endothelium by the proliferation of endothelial cells and inhibit the proliferation and the migration of smooth muscle cells which are responsible to the reformation of atheroma plaque. The surface properties confer to polymer a strong adhesiveness to the metal and biocompatibility vis-a-vis of the arterial wall. Interaction created between the polymer coating and vascular cells are modulated by the physicochemical properties of the surface. It is in this context that my thesis is organized into two themes.The first aim of my thesis is to develop a series of amorphous polymers and study their physicochemical (wettability, roughness ...) and biological properties (adhesion, cell behavior and proliferation) and then correlate these properties to choose the promising coating coronary stent. A degradation study was also conducted on elaborate systems. The second is dedicated to chemical synthesis and stereochemistry of polymers. Indeed, new optically active monomers and the corresponding stereopolyesters were synthesized and characterized in order to compare their physicochemical properties with those of amorphous polyesters studied as a coating of the stent and enhance the biomaterials field
Oudoua, Kaouthar. "Elaboration de microcapsules (bio)dégradables". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0252.
Texto completoMicroencapsulation is a process that protects a hydrophobic substance in a capsule whose size can vary between 1 and 100 micrometers. The core of the capsule is thus isolated from its external environment. This allows to delay its evaporation, its release or its deterioration. This technology is mainly used in the fields of hygiene and home products. The main technology used to create the wall of these capsules is based on the reaction between melamine and formaldehyde which produces a cross-linked thermoset (MF) at the oil/water interface. Recently, environmental concerns about non-degradable microplastic waste have become a global issue. MF microcapsules with non-degradable walls and based on reagents that may pose toxicity concerns contribute to this problem. The aim of this thesis is to develop a new type of microcapsule, easy to synthesize, without using expensive and toxic raw materials, which is (bio)degradable in natural environment, which can be used with a large number of active ingredients, and which provides a good protection to the active ingredient it is intended to protect. During this thesis, we were able to develop a new generation of (bio)degradable microcapsules by developing the interfacial polymerization of poly(β-aminoester). This polymer has already been successfully used in several biomedical applications due to its very good biocompatibility and biodegradability. We have explored and introduced new applications for these non-toxic and biodegradable poly(β-aminoester) microcapsules, especially in the detergent field
Basiak, Ewelina. "Study of the chemical, physical and functional properties of edible starch-based films". Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS018/document.
Texto completoThe amount of waste increased annually, mainly from plastic industry. Plastic materials were more produced during the only last ten years than during the last millennium. A potential solution of the ecological and economic problems can be biodegradable or edible films and coatings. The goal of this thesis was to study edible films and coatings based on starch. Fifteen types of film-forming solutions were made: 3 types of starch, starch + different amounts of plasticizer, starch + proteins, starch + oil. To better understanding the interaction between film components, physical, chemical and functional tests were done. Finnaly, validation on real foods (plums) as coatings and films helped to improved edible barrier films for fruit and vegetable preservation.Preliminary physico-chemical studies of corn, potato and wheat starch film properties allowed choosing the wheat starch-based films further experiments. Then, a 50% amount of plasticizer related to dry biopolymer weight was selected aiming to obtain films being not too rigid, that did not break and without blooming. To prove the barrier moisture efficacy, rapeseed oil was added as multilayers films. Microstructure observations displayed that oil was dispersed as droplets instead of layer, thus emulsion-based films were obtained instead of multilayer starch-oil-starch films. Various ratios of starch/protein were assessed to improve functional properties of films. The more the protein content was, the better the barrier efficiency against water vapour, oxygen or aroma were. Indeed, higher protein content films were more dense and homogeneous. From these data obtained on films, and the better understanding how composition and structure affect film performances, several recipes were tested as coatings or films for wrapping fresh plums. Thermographic analysis was used to study the plums behavior during storage, and starch coating was efficient to delay fruit degradation
Z każdym rokiem wzrasta liczba produkowanych odpadów, w szczególmości tych z plastiku. W ciągu pierwszych dziesięciu lat wyprodukowano więcej tworzyw sztucznych niż w przeciągu całego ubiegłego tysiąclecia. Rozwiązaniem tych ekologicznych i ekonomicznych problemów mogą okazać się filmy i powłoki do żywności. Celem tej pracy były studia nad jadalnymi filmami i powłokami na bazie skrobi. Piętnaście rodzajów roztworów powłokotwórczych zostało wytworzonych: z 3 typów skrobi, skrobia + różne stężenia plastyfikatora, skrobia + białka, skrobia + olej. W celu lepszego zrozumienia interakcji pomiędzy komponentami filmu właściwości fizyczne, chemiczne i funkcjonalne zostały zmierzone. W ostatnim etapie walidacja na prawdziwej żywności (powlekanie i pakowanie śliwek) pomogła w udowodnieniu istnienia właściwości barierowych owoców i warzyw podczas przechowywania.Próbne testy fizyko-chemiczne skrobi kukurydzianej, ziemniaczanej i pszenicznej pomogły w wyborze skrobi otrzymywanej z pszenicy do dalszych badań. Następnie wybrano zawartość plastyfikatora. 50% glicerolu względem suchej masy substancji powłokotwórczej nie powodowało twardości i pękania filmów ani też tzw. efektu kwitnienia (intensywnie żółty/ pomarańczowy kolor filmów). W celu poprawy właściwości barierowych olej rzepakowy został dodany. Zdjęcia mikroskopowe obrazują zawieszone krople oleju w matrycy jako emulsja zamiast dodatkowej warstwy, której oczekiwano. Do skrobi zostały dodane również białka serwatkowe w kilku proporcjach. Im więcej białek jest w stosunku procentowym skrobia/proteiny tyym lepsze są właściwości barierowe dla pary wodnej, tlenu i aromatów. Dodatkowo filmy zawierające więcej protein w stosunku procentowym są bardziej gęste i jednolite. Uzyskane informacje pozwoliły na lepsze zrozumienie wpływu kompozycji i struktury filmów i powłok na pakowanie świeżych śliwek. Analiza z użyciem kamery termowizyjnej pozwoliła na ocenę zmian w owocach podczas przechowywania, zaś powłoka skrobiowa efektywnie opóźniała procesy degradacyjne w owocach
Julien, Jean Mario. "Développement de polymères et composites alvéolaires bio-sourcés à base de poly(acide lactique)". Phd thesis, Lille 1, 2011. http://tel.archives-ouvertes.fr/tel-00726158.
Texto completoGoument, Caroline. "Caractérisation, mise en forme et recyclage de polymères biosourcés pour le développement d’un procédé de fabrication plastronique respectueux de l’environnement". Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0109.
Texto completoIn the majority of cases, electronic objects in our everyday life have a plastic casing made of petrochemical polymer materials. Today, replacing the petrochemical-based materials with more environmentally-friendly ones is a necessary transition. 3D plastronics is an emerging field of research than can overcome some of the limitations of conventional electronics, particularly as it requires to redefine the polymer substrates. This PhD is part of the BIOANTENNA project of the AURA Region's Ambition Research Pack, whose goal is to manufacture an innovative electronic device in terms of the materials used and the functionalities of the electronic circuit. In this thesis, we study a mass production process for electronic devices called In-Mold Electronics (IME). It comprises three main stages: screen printing, thermoforming and injection molding. In the state of the art, the reference polymer in IME is PolyCarbonate (PC). Our goal is to replace PC with a more environmentally-friendly material: Poly(Lactic Acid) (PLA). Over the last ten years, this polymer has been the subject of numerous studies in order to use it as an alternative to petrochemical-based engineering polymers. PLA is the most widely used biosourced polymer today. It is also biodegradable in industrial composting, which could provide a solution for end-of-life products and make it suitable for use in the circular economy. This manuscript is divided in two main parts : one regarding the manufacturing of a plastronic device using IME and PLA, and the other on the dismantling of the IME devices manufactured in the first part
Samuel, Cédric. "Apport de la farine de maïs plastifiée dans les mélanges à matrice polyester pour des applications films". Thesis, Saint-Etienne, 2011. http://www.theses.fr/2011STET4019/document.
Texto completoThin compostable films for extrusion blowing, thermoforming and biaxial stretching are in the scope of these works. Blend of thermoplastic flour and compostable polyesters are proposed and studied. Corn flour can be processed in a twin-screw extruder with glycerol in a similar way than starch. Thermoplastic flour shows some differences with starch but still cannot be used in thin film applications. Thermoplastic flour was blended in a melt state with a compostable polyester matrix, PBAT. Matrix / particle morphologies were achieved and linked with individual rheological behaviour. Good global mechanical properties results from these morphologies were discussed in terms of microstructures, dispersed phase deformation under stress and interface properties. Model particles blends with PBAT and microscopical investigations confirmed the mechanical behavior of the dispersed phase. These blends still suffer from inherent problems concerning thermoplastic flour and uncompatibilized blends. A suitable chemistry was developed to overcome these defects based on monomer polymerization from starch. Ring opening polymerization of trimethylene carbonate in presence of hydroxyl functions and organic catalyst or organometallic initiators displays interesting reaction rates for a reactive extrusion process. Model co-initiators with chemical and sterical environments close to starch were used and transposed. Thermoplastic flour modification by polycarbonate grafting was achieved in a reactive extrusion process coupled with his blending in a melt state with PBAT matrix. Compatibilization effects were discussed in terms of microstructures, interface reactions and matrix modifications. Interface modifications were evidenced on mechanical properties of these blends
Deleage, Fanny. "Formulations et modifications par extrusion réactive d'un mélange de polymères biodégradable et partiellement biosourcé". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES030.
Texto completoBiodegradable plastics need to be more and more competitive. This work, conducted between IMP@UJM laboratory and LCI company had the main objective of increasing the content of renewable materials in the biodegradable blend of poly(butylene adipate-co-terephthalate) (PBAT)/ thermoplastic flour (TPF), without decreasing its mechanical properties. The blend was obtained by a single step extrusion, including flour thermoplastification and blending with the polyester. The scientific challenge was to understand the relationship between processing parameters, the morphology establishment, the concentration of each phase of the blend and its mechanical properties. Then, these results were exploited in order to increase the mechanical properties of the mixture. The influence of the concentration of TPF and the viscosity ratio between the phases was highlighted over the entire concentration range. This highlighted the importance of controlling the interfacial tension of the blend. Mechanisms of the morphology establishment were proposed, as well as interpretations about its effect on the mechanical properties of the blend. Then, a study of the PBAT modification by reactive extrusion was proposed. The evolution of the polyester structure was characterized by size exclusion chromatography, according to various parameters including the mixing time. Finally, various modifications of PBAT/TPF mixture were tested. Modifying the PBAT, the TPF phase or the interface via the compatibilizers were studied in order to tailor the rheological, morphological and mechanical properties