Literatura académica sobre el tema "Mass transfer"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Mass transfer".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Mass transfer"
Gekas, Vassilis. "Mass transfer modeling". Journal of Food Engineering 49, n.º 2-3 (agosto de 2001): 97–102. http://dx.doi.org/10.1016/s0260-8774(00)00223-5.
Texto completoWesselingh, J. A. "Multicomponent Mass Transfer". Chemical Engineering Journal and the Biochemical Engineering Journal 60, n.º 1-3 (diciembre de 1995): 177–79. http://dx.doi.org/10.1016/0923-0467(96)80015-7.
Texto completoGarofalo, Paolo S. "Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part II. Mass transfer calculations". European Journal of Mineralogy 16, n.º 5 (18 de octubre de 2004): 761–76. http://dx.doi.org/10.1127/0935-1221/2004/0016-0761.
Texto completoNakhman, A. D. y Yu V. Rodionov. "Generalized Solution of the Heat and Mass Transfer Problem". Advanced Materials & Technologies, n.º 4 (2017): 056–63. http://dx.doi.org/10.17277/amt.2017.04.pp.056-063.
Texto completoHosovkyi, Roman, Diana Kindzera y Volodymyr Atamanyuk. "Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks". Chemistry & Chemical Technology 10, n.º 4 (15 de septiembre de 2016): 459–63. http://dx.doi.org/10.23939/chcht10.04.459.
Texto completoWogelius, Roy A., Peter M. Morris, Michael A. Kertesz, Emmanuelle Chardon, Alexander I. R. Stark, Michele Warren y James R. Brydie. "Mineral surface reactivity and mass transfer in environmental mineralogy". European Journal of Mineralogy 19, n.º 3 (2 de julio de 2007): 297–307. http://dx.doi.org/10.1127/0935-1221/2007/0019-1727.
Texto completoCoulson, J. M., J. F. Richardson, J. R. Backhurst y J. H. Harker. "Fluid flow, heat transfer and mass transfer". Filtration & Separation 33, n.º 2 (febrero de 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.
Texto completoWu, Kinwah. "Mass Transfer in Low Mass Close Binaries". International Astronomical Union Colloquium 163 (1997): 283–88. http://dx.doi.org/10.1017/s0252921100042755.
Texto completoKobayashi, Takeshi. "Immobilization and mass transfer." Japan journal of water pollution research 9, n.º 11 (1986): 696–98. http://dx.doi.org/10.2965/jswe1978.9.696.
Texto completoCOLLINS II, G. W., J. C. BROWN y J. P. CASSINELLI. "Dynamical mass-transfer paradox". Nature 347, n.º 6292 (octubre de 1990): 433. http://dx.doi.org/10.1038/347433a0.
Texto completoTesis sobre el tema "Mass transfer"
Springer, Pieter Ariaan Martijn. "Mass transfer effects in distillation". [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/88084.
Texto completoMcAleavey, Gervase. "Mass transfer studies in fermentation". Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356899.
Texto completoErasmus, Andre Brink. "Mass transfer in structured packing". Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16045.
Texto completoENGLISH ABSTRACT: Structured packing is a popular column internal for both distillation and absorption unit operations. This is due to the excellent mass transfer characteristics and low pressure drop that it offers compared to random packing or trays. The main disadvantage is the lack in reliable models to describe the mass transfer characteristics of this type of packing. The recent development of the non-equilibrium model or rate based modelling approach has also emphasized the need for accurate hydraulic and efficiency models for sheet metal structured packing. The main focus of this study was to develop an accurate model for the mass transfer efficiency of Flexipac 350Y using a number of experimental and modelling techniques. Efficiency is however closely related to hydraulic capacity. Before attempting to measure and model the efficiency of Flexipac 350Y, the ability of existing published models to accurately describe the hydraulic capacity of this packing was tested. Holdup and pressure drop were measured using air/water and air/heavy paraffin as test systems. All experiments were performed on pilot plant scale 200mm ID glass columns. Satisfactory results were obtained with most of the models for determining the loading point and pressure drop for the air/water test system. All of the models tested predicted a conservative dependency of capacity on liquid viscosity for the air/paraffin test system. Efficiency and pressure drop were measured using the chlorobenzene/ethylbenzene test systems under conditions of total reflux in a 200mm ID glass column. Widely differing results were however obtained with the different models for the efficiency of Flexipac 350Y. Experiments were subsequently designed and performed to measure and correlate the vapour phase mass transfer coefficient and the effective surface area of Flexipac 350Y independently. The vapour phase mass transfer coefficient was measured and correlated by subliming naphthalene into air from coatings applied to specially fabricated 350Y gauze structured packing. The use of computational fluid dynamics (CFD) to model the vapour phase mass transfer coefficient is also demonstrated. The effective surface area for vapour phase mass transfer was measured with the chemical technique. The specific absorption rate of CO2 into monoethanolamine (MEA) using n-propanol as solvent was determined in a wetted-wall column and used to determine the effective surface area of Flexipac 350Y on pilot plant scale (200mm ID glass column). The efficiency of Flexipac 350Y could be modelled within an accuracy of 9% when using the correlations developed in this study and ignoringliquid phase resistance to mass transfer for the chlorobenzene/ethylbenzene test system under conditions of total reflux. The capacity and efficiency of the new generation high capacity packing Flexipac 350Y HC was also measured and compared with that of the normal capacity packing Flexipac 350Y. An increase in capacity of 20% was observed for the HC packing for the air/water system and 4% for the air/heavy paraffin system compared with the normal packing. For the binary total reflux distillation the increase in capacity varied between 8% and 15% depending on the column pressure. The gain in capacity was at the expense of a loss in efficiency of around 3% in the preloading region.
AFRIKAANSE OPSOMMING: Gestruktureerde pakking is 'n populêre pakkingsmateriaal en word algemeen gebruik in distillasie en absorpsie kolomme. Dit is hoofsaaklik as gevolg van die goeie massa-oordragseienskappe en lae drukval wat dit bied in vergelyking met 'random' pakking en plate. The hoof nadeel is egter die tekort aan akkurate modelle om die massa-oordrags eienskappe te bepaal. Om modelle te kan gebruik waar die massaoordragstempo direk gebruik word om gepakte hoogte te bepaal, word akkurate kapasiteits- en effektiwiteitsmodelle vir gestruktureerde plaatmetaalpakking benodig. Die hoof doelwit van hierdie studie was om 'n akkurate model te ontwikkel vir die massa-oordragseffektiwiteit van die plaat metaal pakking Flexipac 350Y deur gebruik te maak van verskillende eksperimentele- en modelleringstegnieke. Effektiwiteit is egter direk gekoppel aan hidroliese kapasiteit. Bestaande modelle in die literatuur is eers getoets om te bepaal of hulle die hidroliese kapasitiet van Flexipac 350Y akkuraat kan voorspel. Vir die doel is vloeistofterughou en drukval gemeet deur gebruik te maak van die sisteme lug/water en lug/swaar parafien. Alle eksperimente is in loodsaanlegskaal 200mm ID glaskolomme uitgevoer. Meeste van die modelle was relatief akkuraat in hulle berekening van die ladingspunt en die drukval vir die lug/water toets sisteem, maar was konsertief in voorspellings van die groothede vir die lug/swaar parafien sisteem. Effektiwiteit en drukval was gemeet deur gebruik te maak van die binêre toetssisteem chlorobenseen/etielbenseen onder totale terugvloei kondisies in 'n 200mm ID glaskolom. Daar is 'n groot verskil in die effektiwiteitsvoorspelling deur die verskillende modelle. Vervolgens is eksperimente ontwerp en uitgevoer om die dampfase massaoordragskoeffisiënt en die effektiewe oppervlakarea vir Flexipac 350Y onafhanklik te meet en te korreleer. Die dampfase massaoordragskoeffisient is gemeet en gekorreleer deur naftaleen te sublimeer vanaf spesiaal vervaardigde 350Y gestruktureerde pakking van metaalgaas. Die gebruik van numeriese vloeimeganika (CFD) om die dampfase massaoordragskoeffisient te bereken word gedemonstreer. Die effektiewe oppervlakarea vir dampfase massaoordrag is bepaal deur van 'n chemiese metode gebruik te maak. Die spesifieke absorpsietempo van CO2 in monoetanolamien (MEA) met n-propanol as oplosmiddel is gemeet in a benatte wand kolom en gebruik om die effektiewe oppervlakarea van Flexipac 350Y te bepaal op loodsaanlegskaal (200mm ID). Die effektiwiteit van Flexipac 350Y kon met 'n akkuraatheid van binne 9%gemodelleer word deur vloeistoffaseweerstand te ignoreer en van die korrelasies gebruik te maak wat in hierdie studie ontwikkel is. Die effektiwiteit en kapasiteit van die nuwe generasie hoë kapasiteit pakking Flexipac 350Y HC is ook gemeet en vergelyk met die normale kapasiteit pakking Flexipac 350Y. 'n Verhoging in kapsiteit van 20% is gemeet vir die HC pakking in vergelyking met die normale kapasiteit pakking vir die lug/water sisteem en 'n 4% verhoging in kapasiteit vir die lug/swaar parafien sisteem. Die verhoging in kapasiteit het gevarieër tussen 8% en 14% in die binêre totale terugvloei distillasie toetse en was afhanklik van die kolom druk. Die verhoging in kapasiteit was ten koste van 'n verlaging in effektiwiteit van ongeveer 3% onderkant die ladingspunt.
Zhao, Xiaomin. "Formaldehyde mass-transfer properties study". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51597.
Texto completoMaster of Science
Xu, Feishi. "Bubble hydrodynamics and mass transfer in complex media". Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0003.
Texto completoThe knowledge on the hydrodynamic property and mass transfer of bubbles is important since it will give guidelines for selecting the operation condition and for reactor design in such processes. For this purpose, this PhD manuscript has implemented an experimental investigation of single air bubbles rising in various polymer solutions (Breox, Polyacrylamide (PAAm) and Xanthan gum) which can simulate the property of the sewage. The works can divided into three parts: Firstly, with a review of the current visualization techniques for mass transfer, three techniques have been tested for air bubble (equivalent diameter ≈ 1 mm) rising in water including traditional Planar Laser Induced Fluorescent (PLIF, dye: fluorescent resorufin), Fluorescent quenching technique (PLIF with Inhibition, dye: ruthenium complex) and colorimetric techniques (dye: pink resorufin), respectively. Secondly, based on images captured by a high speed camera, the hydrodynamics of the bubble single air bubbles (equivalent diameters: 0.7-7 mm) rising in the polymer solutions (PAAm and Xanthan) have been investigated including the bubble velocity, trajectory and bubble shape. Finally, based on PLIF-I technique, the mass transfer and diffusion phenomena in the wake of single air bubbles (equivalent diameter ≈ 1 mm) rising in various aqueous polymer solutions (PAAm and Breox) are investigated
Raison, Christian E. "Mass transfer in aerated vibrated beds". Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03032009-040719/.
Texto completoVasan, S. S. "Analysis of mass transfer in ultrafiltration". Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424738.
Texto completoHanif, Mohammed. "Mass transfer studies in solvent extraction". Thesis, Teesside University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328022.
Texto completoDUARTE, LUIZ GUSTAVO DA CRUZ. "MASS TRANSFER TO SWIRL IMPINGING JETS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24868@1.
Texto completoThe present work is an experimental study of the mass transfer characteristics of a swirling jet impinging on a flat plate. The main objective of the investigation was to determine the influence of a circumferential velocity component (the swirl component) on the local and average mass transfer coefficients at the plate surface. The dimensionless parameters investigated were the jet Reynolds number, the jet-to-plate distance, and the strength of the swirl flow given by the swirl number. Mass transfer coefficients were obtained utilizing the naphthalene sublimation technique. The local coefficients were determined employing a computerized coodinate table which allowed a detailed study of the effects of the presence of the swirl component. Average coefficients were determined independently through precision weighing, and displayed excellent agreement with the integrated local coefficients. The results demonstrated that the presence of the swirl component decreases the mass transfer coefficients, when compared with the non-swirl case. Flow visualization experiments were conducted utilizing the oil-lamp black technique. The results revealed regions of reverse flow at the stagnation zone for high values of the swirl number.
Kumar, Anil. "Hydrodynamics and mass transfer in Kühni extractor /". [S.l.] : [s.n.], 1985. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=7806.
Texto completoLibros sobre el tema "Mass transfer"
R, Krishna, ed. Mass transfer. New York: E. Horwood, 1990.
Buscar texto completoF, Mills Anthony, ed. Mass transfer. Upper Saddle River, N.J: Prentice Hall, 2001.
Buscar texto completoR, Krishna, ed. Multicomponent mass transfer. New York: Wiley, 1993.
Buscar texto completoBaehr, Hans Dieter y Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-29527-5.
Texto completoKarwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6.
Texto completoBaehr, Hans Dieter y Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20021-2.
Texto completoKarwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1557-1.
Texto completoBaehr, Hans Dieter y Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03659-4.
Texto completoMills, Anthony F. Heat and mass transfer. Burr Ridge, Ill: Irwin, 1995.
Buscar texto completoCatchpole, Owen John. Packed bed mass transfer. Birmingham: University of Birmingham, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Mass transfer"
Lichtner, Peter C. "Mass Transfer". En Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_68-1.
Texto completoLichtner, Peter C. "Mass Transfer". En Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_68-2.
Texto completoLichtner, Peter C. "Mass Transfer". En Encyclopedia of Earth Sciences Series, 892–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_68.
Texto completoNielsen, Jens, John Villadsen y Gunnar Lidén. "Mass Transfer". En Bioreaction Engineering Principles, 423–75. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0767-3_10.
Texto completoKarwa, Rajendra. "Mass Transfer". En Heat and Mass Transfer, 929–48. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1557-1_15.
Texto completoBrenn, Günter. "Mass Transfer". En Mathematical Engineering, 239–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-51423-8_9.
Texto completoSmith, P. G. "Mass Transfer". En Food Science Text Series, 193–219. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7662-8_8.
Texto completoWright, Dennis. "Mass Transfer". En Basic Programs for Chemical Engineers, 96–135. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4121-2_4.
Texto completoZohuri, Bahman y Nima Fathi. "Mass Transfer". En Thermal-Hydraulic Analysis of Nuclear Reactors, 311–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_11.
Texto completoKarwa, Rajendra. "Mass Transfer". En Heat and Mass Transfer, 1041–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6_15.
Texto completoActas de conferencias sobre el tema "Mass transfer"
Gabitto, Jorge F. "Matrix-Fracture Mass Transfer". En SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/39702-ms.
Texto completoGoldstein, Richard J. "Mass Transfer Systems for Simulating Heat Transfer Processes". En Advanced Course in Measurement Techniques in Heat and MassTransfer. Connecticut: Begellhouse, 1985. http://dx.doi.org/10.1615/ichmt.1985.advcoursemeastechheatmasstransf.180.
Texto completoLoomis, G. G. "CORE THERMAL RESPONSE AND MASS DISTRIBUTION DURING VESSEL MASS DEPLETION ASSOCIATED WITH A SBLOCA". En International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.3400.
Texto completoLi, Jiayi, Bingqing Luo y Zhaojun Liu. "Micro-LED Mass Transfer Technologies". En 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9201923.
Texto completoSemiat, R. "DESALINATION: HEAT VERSUS MASS TRANSFER". En Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p30.250.
Texto completo"Thermo-solutal convection, Mass transfer". En CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.660.
Texto completoBobrick, Alexey. "Mass transfer in compact binaries". En Gamma-Ray Bursts 2012 Conference. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.152.0111.
Texto completoCavanagh, L., Y. Li, T. Evans, John Lucas y Geoffrey M. Evans. "Heat Transfer Modelling of Submerged Gas Injection into a Molten Metal Bath". En Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.430.
Texto completoParpais, Sylvain, Jean Pierre Bertoglio y Andre Laporta. "A Spectral Model for Inhomogeneous Turbulence Applied to the Prediction of Turbulent Heat Flux and Temperature Spectra". En Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.580.
Texto completoOzmen, L., Timothy A. G. Langrish y E. M. Gipps. "SPRAY DRYING PHARMACEUTICAL PRODUCTS FOR NASAL DELIVERY: The Effects of Feed Solution Properties and Operating Conditions on Particle Size and Density". En Heat and Mass Transfer Australasia. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/978-1-56700-099-3.500.
Texto completoInformes sobre el tema "Mass transfer"
Pigford, T. H. y P. L. Chambre. Mass transfer in a salt repository. Office of Scientific and Technical Information (OSTI), mayo de 1985. http://dx.doi.org/10.2172/6381376.
Texto completoSingh, Rajesh K., Jie Bao, Chao Wang y Zhijie Xu. Device-scale CFD study for mass transfer coefficient and effective mass transfer area in packed column. Office of Scientific and Technical Information (OSTI), octubre de 2018. http://dx.doi.org/10.2172/1492447.
Texto completoChesna, J. C. Mass Transfer in 12-CM Centrifugal Contactors. Office of Scientific and Technical Information (OSTI), junio de 2001. http://dx.doi.org/10.2172/782822.
Texto completoWatson, Thomas B. Proton Transfer Time-of-Flight Mass Spectrometer. Office of Scientific and Technical Information (OSTI), marzo de 2016. http://dx.doi.org/10.2172/1251396.
Texto completoSutija, D. P. Micro-scale mass-transfer variations during electrodeposition. Office of Scientific and Technical Information (OSTI), agosto de 1991. http://dx.doi.org/10.2172/5208259.
Texto completoDay-Lewis, Frederick, Kamini Singha, Roy Haggerty, Tim Johnson, Andrew Binley y John Lane. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters. Office of Scientific and Technical Information (OSTI), enero de 2014. http://dx.doi.org/10.2172/1114652.
Texto completoZyvoloski, G., Z. Dash y S. Kelkar. FEHM: finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), marzo de 1988. http://dx.doi.org/10.2172/5495517.
Texto completoDay-Lewis, Frederick David, Kamini Singha, Timothy C. Johnson, Roy Haggerty, Andrew Binley y John W. Lane. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters. Office of Scientific and Technical Information (OSTI), noviembre de 2014. http://dx.doi.org/10.2172/1164392.
Texto completoChambre, P. L., T. H. Pigford, W. W. L. Lee, J. Ahn, S. Kajiwara, C. L. Kim, H. Kimura, H. Lung, W. J. Williams y S. J. Zavoshy. Mass transfer and transport in a geologic environment. Office of Scientific and Technical Information (OSTI), abril de 1985. http://dx.doi.org/10.2172/5161610.
Texto completoBell, J. y L. Hand. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements. Office of Scientific and Technical Information (OSTI), abril de 2005. http://dx.doi.org/10.2172/918405.
Texto completo