Artículos de revistas sobre el tema "Maritime anomaly detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Maritime anomaly detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Iphar, Clément, Cyril Ray y Aldo Napoli. "Data integrity assessment for maritime anomaly detection". Expert Systems with Applications 147 (junio de 2020): 113219. http://dx.doi.org/10.1016/j.eswa.2020.113219.
Texto completoKim, Donghyun, Gian Antariksa, Melia Putri Handayani, Sangbong Lee y Jihwan Lee. "Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data". Sensors 21, n.º 15 (31 de julio de 2021): 5200. http://dx.doi.org/10.3390/s21155200.
Texto completoTserpes, Konstantinos, Konstantinos Chatzikokolakis, Dimitris Zissis, Giannis Spiliopoulos y Ioannis Kontopoulos. "Real-time maritime anomaly detection: detecting intentional AIS switch-off". International Journal of Big Data Intelligence 7, n.º 2 (2020): 85. http://dx.doi.org/10.1504/ijbdi.2020.10029526.
Texto completoKontopoulos, Ioannis, Konstantinos Chatzikokolakis, Dimitris Zissis, Konstantinos Tserpes y Giannis Spiliopoulos. "Real-time maritime anomaly detection: detecting intentional AIS switch-off". International Journal of Big Data Intelligence 7, n.º 2 (2020): 85. http://dx.doi.org/10.1504/ijbdi.2020.107375.
Texto completoSithiravel, Rajiv, Bhashyam Balaji, Bradley Nelson, Michael Kenneth McDonald, Ratnasingham Tharmarasa y Thiagalingam Kirubarajan. "Airborne Maritime Surveillance Using Magnetic Anomaly Detection Signature". IEEE Transactions on Aerospace and Electronic Systems 56, n.º 5 (octubre de 2020): 3476–90. http://dx.doi.org/10.1109/taes.2020.2973866.
Texto completoKazemi, Samira, Shahrooz Abghari, Niklas Lavesson, Henric Johnson y Peter Ryman. "Open data for anomaly detection in maritime surveillance". Expert Systems with Applications 40, n.º 14 (octubre de 2013): 5719–29. http://dx.doi.org/10.1016/j.eswa.2013.04.029.
Texto completoHan, X., C. Armenakis y M. Jadidi. "DBSCAN OPTIMIZATION FOR IMPROVING MARINE TRAJECTORY CLUSTERING AND ANOMALY DETECTION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2020 (25 de agosto de 2020): 455–61. http://dx.doi.org/10.5194/isprs-archives-xliii-b4-2020-455-2020.
Texto completoMichałowska, Katarzyna, Signe Riemer-Sørensen, Camilla Sterud y Ole Magnus Hjellset. "Anomaly Detection with Unknown Anomalies: Application to Maritime Machinery". IFAC-PapersOnLine 54, n.º 16 (2021): 105–11. http://dx.doi.org/10.1016/j.ifacol.2021.10.080.
Texto completoPark, Jaemin y Sungil Kim. "Maritime Anomaly Detection Based on VAE-CUSUM Monitoring System". Journal of the Korean Institute of Industrial Engineers 46, n.º 4 (31 de agosto de 2020): 432–42. http://dx.doi.org/10.7232/jkiie.2020.46.4.432.
Texto completoLei, Po-Ruey. "A framework for anomaly detection in maritime trajectory behavior". Knowledge and Information Systems 47, n.º 1 (19 de mayo de 2015): 189–214. http://dx.doi.org/10.1007/s10115-015-0845-4.
Texto completoZhao, Liangbin y Guoyou Shi. "Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network". Journal of Navigation 72, n.º 04 (8 de febrero de 2019): 894–916. http://dx.doi.org/10.1017/s0373463319000031.
Texto completoOsekowska, Ewa, Henric Johnson y Bengt Carlsson. "Grid Size Optimization for Potential Field based Maritime Anomaly Detection". Transportation Research Procedia 3 (2014): 720–29. http://dx.doi.org/10.1016/j.trpro.2014.10.051.
Texto completoWolsing, Konrad, Linus Roepert, Jan Bauer y Klaus Wehrle. "Anomaly Detection in Maritime AIS Tracks: A Review of Recent Approaches". Journal of Marine Science and Engineering 10, n.º 1 (14 de enero de 2022): 112. http://dx.doi.org/10.3390/jmse10010112.
Texto completoFilipiak, Dominik, Milena Stróżyna, Krzysztof Węcel y Witold Abramowicz. "Big Data for Anomaly Detection in Maritime Surveillance: Spatial AIS Data Analysis for Tankers". Zeszyty Naukowe Akademii Marynarki Wojennej 215, n.º 4 (1 de diciembre de 2018): 5–28. http://dx.doi.org/10.2478/sjpna-2018-0024.
Texto completoAmro, Ahmed, Aybars Oruc, Vasileios Gkioulos y Sokratis Katsikas. "Navigation Data Anomaly Analysis and Detection". Information 13, n.º 3 (23 de febrero de 2022): 104. http://dx.doi.org/10.3390/info13030104.
Texto completoZhen, Rong, Yongxing Jin, Qinyou Hu, Zheping Shao y Nikitas Nikitakos. "Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier". Journal of Navigation 70, n.º 3 (16 de enero de 2017): 648–70. http://dx.doi.org/10.1017/s0373463316000850.
Texto completoRiveiro, Maria. "Evaluation of Normal Model Visualization for Anomaly Detection in Maritime Traffic". ACM Transactions on Interactive Intelligent Systems 4, n.º 1 (abril de 2014): 1–24. http://dx.doi.org/10.1145/2591511.
Texto completoFreitas, Sara, Hugo Silva, José Miguel Almeida y Eduardo Silva. "Convolutional neural network target detection in hyperspectral imaging for maritime surveillance". International Journal of Advanced Robotic Systems 16, n.º 3 (1 de mayo de 2019): 172988141984299. http://dx.doi.org/10.1177/1729881419842991.
Texto completoYan, Ran y Shuaian Wang. "Ship detention prediction using anomaly detection in port state control: model and explanation". Electronic Research Archive 30, n.º 10 (2022): 3679–91. http://dx.doi.org/10.3934/era.2022188.
Texto completoChen, Shuguang, Yikun Huang y Wei Lu. "Anomaly Detection and Restoration for AIS Raw Data". Wireless Communications and Mobile Computing 2022 (30 de marzo de 2022): 1–11. http://dx.doi.org/10.1155/2022/5954483.
Texto completoHuang, Jie, Fengwei Zhu, Zejun Huang, Jian Wan y Yongjian Ren. "Research on Real-Time Anomaly Detection of Fishing Vessels in a Marine Edge Computing Environment". Mobile Information Systems 2021 (4 de mayo de 2021): 1–15. http://dx.doi.org/10.1155/2021/5598988.
Texto completoXu, Gangyan, Chun-Hsien Chen, Fan Li y Xuan Qiu. "AIS data analytics for adaptive rotating shift in vessel traffic service". Industrial Management & Data Systems 120, n.º 4 (8 de marzo de 2020): 749–67. http://dx.doi.org/10.1108/imds-01-2019-0056.
Texto completoVenskus, Julius, Povilas Treigys, Jolita Bernatavičienė, Gintautas Tamulevičius y Viktor Medvedev. "Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding". Sensors 19, n.º 17 (31 de agosto de 2019): 3782. http://dx.doi.org/10.3390/s19173782.
Texto completoTyasayumranani, Widiastuti, Taewoong Hwang, Taemin Hwang y Ik-Hyun Youn. "Anomaly detection model of small-scaled ship for maritime autonomous surface ships’ operation". Journal of International Maritime Safety, Environmental Affairs, and Shipping 6, n.º 4 (2 de octubre de 2022): 224–35. http://dx.doi.org/10.1080/25725084.2022.2154116.
Texto completoAbreu, Fernando H. O., Amilcar Soares, Fernando V. Paulovich y Stan Matwin. "A Trajectory Scoring Tool for Local Anomaly Detection in Maritime Traffic Using Visual Analytics". ISPRS International Journal of Geo-Information 10, n.º 6 (15 de junio de 2021): 412. http://dx.doi.org/10.3390/ijgi10060412.
Texto completoYan, Zhenguo, Xin Song, Hanyang Zhong, Lei Yang y Yitao Wang. "Ship Classification and Anomaly Detection Based on Spaceborne AIS Data Considering Behavior Characteristics". Sensors 22, n.º 20 (11 de octubre de 2022): 7713. http://dx.doi.org/10.3390/s22207713.
Texto completoStróżyna, Milena, Jacek Małyszko, Krzysztof Węcel, Dominik Filipiak y Witold Abramowicz. "Architecture of Maritime Awareness System Supplied with External Information". Annual of Navigation 23, n.º 1 (1 de diciembre de 2016): 135–49. http://dx.doi.org/10.1515/aon-2016-0009.
Texto completoKatsamenis, Iason, Nikolaos Bakalos, Eleni Eirini Karolou, Anastasios Doulamis y Nikolaos Doulamis. "Fall Detection Using Multi-Property Spatiotemporal Autoencoders in Maritime Environments". Technologies 10, n.º 2 (29 de marzo de 2022): 47. http://dx.doi.org/10.3390/technologies10020047.
Texto completoSun, Jiaqi, Jiarong Wang, Zhicheng Hao, Ming Zhu, Haijiang Sun, Ming Wei y Kun Dong. "AC-LSTM: Anomaly State Perception of Infrared Point Targets Based on CNN+LSTM". Remote Sensing 14, n.º 13 (4 de julio de 2022): 3221. http://dx.doi.org/10.3390/rs14133221.
Texto completoLiu, Lei, Yong Zhang, Yue Hu, Yongming Wang, Jingyi Sun y Xiaoxiao Dong. "A Hybrid-Clustering Model of Ship Trajectories for Maritime Traffic Patterns Analysis in Port Area". Journal of Marine Science and Engineering 10, n.º 3 (1 de marzo de 2022): 342. http://dx.doi.org/10.3390/jmse10030342.
Texto completod'Afflisio, Enrica, Paolo Braca y Peter Willett. "Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection". IEEE Transactions on Aerospace and Electronic Systems 57, n.º 4 (agosto de 2021): 2093–108. http://dx.doi.org/10.1109/taes.2021.3083466.
Texto completoRoberts, Steven Andrew. "A Shape‐Based Local Spatial Association Measure (LISShA): A Case Study in Maritime Anomaly Detection". Geographical Analysis 51, n.º 4 (19 de noviembre de 2018): 403–25. http://dx.doi.org/10.1111/gean.12178.
Texto completoGuo, Shaoqing, Junmin Mou, Linying Chen y Pengfei Chen. "An Anomaly Detection Method for AIS Trajectory Based on Kinematic Interpolation". Journal of Marine Science and Engineering 9, n.º 6 (1 de junio de 2021): 609. http://dx.doi.org/10.3390/jmse9060609.
Texto completoBombara, Giuseppe y Calin Belta. "Offline and Online Learning of Signal Temporal Logic Formulae Using Decision Trees". ACM Transactions on Cyber-Physical Systems 5, n.º 3 (julio de 2021): 1–23. http://dx.doi.org/10.1145/3433994.
Texto completoSfyridis, A., T. Cheng y M. Vespe. "DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W2 (19 de octubre de 2017): 53–60. http://dx.doi.org/10.5194/isprs-annals-iv-4-w2-53-2017.
Texto completoÇALIŞKAN, Ufuk Yakup y Burak ZİNCİR. "Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer". Marine Science and Technology Bulletin 11, Early View (31 de diciembre de 2022): 384–96. http://dx.doi.org/10.33714/masteb.1159477.
Texto completoSteidel, Matthias, Jan Mentjes y Axel Hahn. "Context-Sensitive Prediction of Vessel Behavior". Journal of Marine Science and Engineering 8, n.º 12 (4 de diciembre de 2020): 987. http://dx.doi.org/10.3390/jmse8120987.
Texto completoOka Widyantara, I. Made, I. Putu Noven Hartawan, Anak Agung Istri Ngurah Eka Karyawati, Ngurah Indra Er y Ketut Buda Artana. "Automatic identification system-based trajectory clustering framework to identify vessel movement pattern". IAES International Journal of Artificial Intelligence (IJ-AI) 12, n.º 1 (1 de marzo de 2023): 1. http://dx.doi.org/10.11591/ijai.v12.i1.pp1-11.
Texto completoWang, Yitao, Lei Yang, Xin Song, Quan Chen y Zhenguo Yan. "A Multi-Feature Ensemble Learning Classification Method for Ship Classification with Space-Based AIS Data". Applied Sciences 11, n.º 21 (3 de noviembre de 2021): 10336. http://dx.doi.org/10.3390/app112110336.
Texto completoLumbangaol, A., I. M. Radjawane y A. Furqon. "Linkages of Active and Weakening MJO events to Seasonal Variations over the Maritime Continent". IOP Conference Series: Earth and Environmental Science 925, n.º 1 (1 de noviembre de 2021): 012004. http://dx.doi.org/10.1088/1755-1315/925/1/012004.
Texto completoYanti, Tia Novi y Dahruji. "Window Dressing Detection in the Energy Sector Industry Listed on the Indonesian Sharia Stock Index". Jurnal Ekonomi Syariah Teori dan Terapan 9, n.º 6 (30 de noviembre de 2022): 800–814. http://dx.doi.org/10.20473/vol9iss20226pp800-814.
Texto completoRiveiro, Maria, Giuliana Pallotta y Michele Vespe. "Maritime anomaly detection: A review". WIREs Data Mining and Knowledge Discovery 8, n.º 5 (25 de mayo de 2018). http://dx.doi.org/10.1002/widm.1266.
Texto completoWei, Zhaokun, Xinlian Xie y Xiaoju Zhang. "Maritime anomaly detection based on a support vector machine". Soft Computing, 7 de agosto de 2022. http://dx.doi.org/10.1007/s00500-022-07409-w.
Texto completoWei, Zhaokun, Xinlian Xie y Xiaoju Zhang. "Maritime anomaly detection based on a support vector machine". Soft Computing, 7 de agosto de 2022. http://dx.doi.org/10.1007/s00500-022-07409-w.
Texto completoKarataş, Gözde Boztepe, Pinar Karagoz y Orhan Ayran. "Trajectory pattern extraction and anomaly detection for maritime vessels". Internet of Things, agosto de 2021, 100436. http://dx.doi.org/10.1016/j.iot.2021.100436.
Texto completoHu, Jia, Kuljeet Kaur, Hui Lin, Xiaoding Wang, Mohammad Mehedi Hassan, Imran Razzak y Mohammad Hammoudeh. "Intelligent Anomaly Detection of Trajectories for IoT Empowered Maritime Transportation Systems". IEEE Transactions on Intelligent Transportation Systems, 2022, 1–10. http://dx.doi.org/10.1109/tits.2022.3162491.
Texto completo"Anomaly Detection in Vessel Tracking – A Bayesian Networks (BNs) Approach". International Journal of Maritime Engineering Part A3 2015 157, A3 (1 de enero de 2015): 145–52. http://dx.doi.org/10.3940/rina.ijme.2015.a3.316.
Texto completoHandayani, D., W. Sediono y A. Shah. "ANOMALY DETECTION IN VESSEL TRACKING – A BAYESIAN NETWORKS (BNs) APPROACH". International Journal of Maritime Engineering 157, A3 (13 de diciembre de 2021). http://dx.doi.org/10.5750/ijme.v157ia3.956.
Texto completoForti, Nicola, Enrica d'Afflisio, Paolo Braca, Leonardo M. Millefiori, Peter Willett y Sandro Carniel. "Maritime Anomaly Detection in a Real-World Scenario: Ever Given Grounding in the Suez Canal". IEEE Transactions on Intelligent Transportation Systems, 2021, 1–7. http://dx.doi.org/10.1109/tits.2021.3123890.
Texto completoNguyen, Duong, Rodolphe Vadaine, Guillaume Hajduch, Rene Garello y Ronan Fablet. "GeoTrackNet--A Maritime Anomaly Detector Using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection". IEEE Transactions on Intelligent Transportation Systems, 2021, 1–13. http://dx.doi.org/10.1109/tits.2021.3055614.
Texto completo