Literatura académica sobre el tema "Marine Ice sheet"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Marine Ice sheet".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Marine Ice sheet"
Gandy, Niall, Lauren J. Gregoire, Jeremy C. Ely, Christopher D. Clark, David M. Hodgson, Victoria Lee, Tom Bradwell y Ruza F. Ivanovic. "Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland". Cryosphere 12, n.º 11 (23 de noviembre de 2018): 3635–51. http://dx.doi.org/10.5194/tc-12-3635-2018.
Texto completoMulder, T. E., S. Baars, F. W. Wubs y H. A. Dijkstra. "Stochastic marine ice sheet variability". Journal of Fluid Mechanics 843 (23 de marzo de 2018): 748–77. http://dx.doi.org/10.1017/jfm.2018.148.
Texto completoHASELOFF, MARIANNE y OLGA V. SERGIENKO. "The effect of buttressing on grounding line dynamics". Journal of Glaciology 64, n.º 245 (7 de mayo de 2018): 417–31. http://dx.doi.org/10.1017/jog.2018.30.
Texto completoSchoof, Christian. "Marine ice sheet stability". Journal of Fluid Mechanics 698 (15 de marzo de 2012): 62–72. http://dx.doi.org/10.1017/jfm.2012.43.
Texto completoPegler, Samuel S. "Suppression of marine ice sheet instability". Journal of Fluid Mechanics 857 (25 de octubre de 2018): 648–80. http://dx.doi.org/10.1017/jfm.2018.742.
Texto completoPegler, Samuel S. "Marine ice sheet dynamics: the impacts of ice-shelf buttressing". Journal of Fluid Mechanics 857 (25 de octubre de 2018): 605–47. http://dx.doi.org/10.1017/jfm.2018.741.
Texto completoMeur, E. Le y Richard C. A. Hindmarsh. "Coupled marine-ice-sheet/Earth dynamics using a dynamically consistent ice-sheet model and a self-gravitating viscous Earth model". Journal of Glaciology 47, n.º 157 (2001): 258–70. http://dx.doi.org/10.3189/172756501781832322.
Texto completoLeguy, Gunter R., William H. Lipscomb y Xylar S. Asay-Davis. "Marine ice sheet experiments with the Community Ice Sheet Model". Cryosphere 15, n.º 7 (14 de julio de 2021): 3229–53. http://dx.doi.org/10.5194/tc-15-3229-2021.
Texto completoTsai, Victor C., Andrew L. Stewart y Andrew F. Thompson. "Marine ice-sheet profiles and stability under Coulomb basal conditions". Journal of Glaciology 61, n.º 226 (2015): 205–15. http://dx.doi.org/10.3189/2015jog14j221.
Texto completoZweck, Chris y Philippe Huybrechts. "Modeling the marine extent of Northern Hemisphere ice sheets during the last glacial cycle". Annals of Glaciology 37 (2003): 173–80. http://dx.doi.org/10.3189/172756403781815870.
Texto completoTesis sobre el tema "Marine Ice sheet"
Koester, Alexandria Jo. "Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA during late Heinrich Stadial 1:". Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107308.
Texto completoFew data are available to infer the thinning rate of the Laurentide Ice Sheet (LIS) through the last deglaciation, despite its importance for constraining past ice sheet response to climate warming. We measured 31 cosmogenic 10Be exposure ages in samples collected on coastal mountainsides in Acadia National Park and from the slightly inland Pineo Ridge moraine complex, a ~100-km-long glaciomarine delta, to constrain the timing and rate of LIS thinning and subsequent retreat in coastal Maine. Samples collected along vertical transects in Acadia National Park have indistinguishable exposure ages over a 300 m range of elevation, suggesting that rapid, century-scale thinning occurred at 15.2 ± 0.7 ka, similar to the timing of abrupt thinning inferred from cosmogenic exposure ages at Mt. Katahdin in central Maine (Davis et al., 2015). This rapid ice sheet surface lowering, which likely occurred during the latter part of the cold Heinrich Stadial 1 event (19-14.6 ka), may have been due to enhanced ice-shelf melt and calving in the Gulf of Maine, perhaps related to regional oceanic warming associated with a weakened Atlantic Meridional Overturning Circulation at this time. The ice margin subsequently stabilized at the Pineo Ridge moraine complex until 14.5 ± 0.7 ka, near the onset of Bølling Interstadial warming. Our 10Be ages are substantially younger than marine radiocarbon constraints on LIS retreat in the coastal lowlands, suggesting that the deglacial marine reservoir effect in this area was ~1,200 14C years, perhaps also related to the sluggish Atlantic Meridional Overturning Circulation during Heinrich Stadial 1
Thesis (MS) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Earth and Environmental Sciences
Nicholl, Joseph Anthony Leo. "Changes in ice sheet dynamics across the mid-Pleistocene transition recorded in North Atlantic sediments". Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648858.
Texto completoSimmons, Sarah-Louise. "An investigation into the effect of glacially exported nutrients from the Greenland Ice Sheet on marine primary production". Thesis, University of Bristol, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.742982.
Texto completoCook, Carys Patricia. "Insights into the behaviour of the Pliocene East Antarctic ice sheet from provenance studies of marine sediments using radiogenic isotopoes". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/14262.
Texto completoSacchetti, Fabio. "Late Quaternary sedimentation associated with the British-Irish Ice Sheet on the NW Irish continental slope: a marine geological and geophysical investigation". Thesis, University of Manchester, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646396.
Texto completoLeigh, Sasha Naomi Bharier. "A study of the dynamics of the British Ice Sheet during Marine Isotope Stages 2 and 3, focusing on Heinrich Events 2 and 4 and their relationship to the North Atlantic glaciological and climatological conditions /". St Andrews, 2007. http://hdl.handle.net/10023/525.
Texto completoHibbert, Fiona Danielle. "Dynamics of the British Ice Sheet and prevailing hydrographic conditions for the last 175,000 years : an investigation of marine sediment core MD04-2822 from the Rockall Trough". Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/3136.
Texto completoHill, Heather W. "Abrupt climate change during the last glacial period : a Gulf of Mexico perspective". [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001539.
Texto completoVan, Aalderen Victor. "Modéliser l'évolution du climat global et de la calotte eurasienne pendant la dernière déglaciation". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASJ029.
Texto completoThe marine West Antarctic ice sheet is characterized by being largely in contact with the ocean. The latest observations reveal an acceleration in its mass loss over the last few decades, mainly due to increased melting under floating ice shelves. However, its future evolution remains highly uncertain, due to our poor understanding of the physical processes at play between the ice sheet and the ocean.The last deglaciation (21 ka-11 ka) is one of the most recent major climatic changes in our history. This period is marked by an increase in global atmospheric temperatures and the melting of the North American and Eurasian ice sheets. The study of the Barents-Kara Ice Sheet (BKIS), which covered the Barents and Kara Seas during the Last Glacial Maximum (LGM, 21 ka) and was an integral part of the Eurasian Ice Sheet, is of particular interest because of its common features with present-day West Antarctica. Identifying the mechanisms responsible for its retreat allows to provide information to better understand the West Antarctic behavior within under present and future climatic conditions.The impact of climate on the evolution of a marine ice sheet depends on two main processes: The surface mass balance, depending on atmospheric temperatures and precipitation, and melting under floating ice, related to oceanic temperatures and salinity. In order to identify the mechanisms triggering the BKIS retreat, I used the GRISLI2.0 ice-sheet model to analyse the ice-sheet response to climate perturbations at the LGM. This study highlighted the key role of atmospheric temperatures in triggering the melting of the ice sheet via surface melting, while ocean temperatures had only a limited impact despite a large part of BKIS being in contact with the ocean. I also identified that the total retreat of BKIS could be attributed to a mechanical instability at the grounding line, caused by a decrease in ice thickness resulting from an increase in surface melting.In order to better understand the impact of ice sheets on the global climate, I have also carried out the first transient simulation of the last deglaciation with the IPSL-CM5A2 model, modifying the geometry of the ice sheets provided by the GLAC-1D reconstruction at some key periods. The simulations show a warming trend in line with the reconstructions, particularly during MWP1A, which was characterised by an abrupt rise in atmospheric temperatures. Using sensitivity experiments, I have shown that changes in the ice sheet geometry have contributed to the increase in atmospheric temperatures via temperature-altitude feedbacks and the albedo effect. Moreover, I have shown that ocean dynamics have been significantly altered by freshwater fluxes from the melting ice sheets. This has led to a weakening of the strength of the Atlantic Meridional Overturning Circulation and a reduction of its deepening, resulting in a warming slowdown, mainly located in the North Atlantic Ocean. In addition, the IPSL-CM5A2 experiments all simulate a shutdown of the Antarctic bottom water circulation at the onset of MWP1A, leading to a significant cooling of about 100 years in the Amundsen Sea, followed by a restart of this circulation.This work is contributing to a better understanding of the complex mechanisms governing the dynamics of the ice sheets and their interaction with the climate, while also providing a basis for anticipating the consequences of current and future climate change, particularly in West Antarctica
Nowicki, Sophie Marie Jeanne. "Modelling the transition zone of marine ice sheets". Thesis, University College London (University of London), 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499076.
Texto completoLibros sobre el tema "Marine Ice sheet"
Bindschadler, R. A. SeaRISE: A multidisciplinary research initiative to predict rapid changes in global sea level caused by collapse of marine ice sheets. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Buscar texto completoOffice, General Accounting. Coast Guard: Federal costs resulting from the Exxon Valdez oil spill : fact sheet for congressional requesters. Washington, D.C: GAO, 1990.
Buscar texto completoKassens, Heidemarie. Sistema mori͡a Laptevykh i prilegai͡ushchikh moreĭ Arktiki: Sovremennoe sostoi͡anie i istorii͡a razvitii͡a. Moskva: Moskovskiĭ gos. universitet, 2009.
Buscar texto completoBindschadler, R. A. SeaRISE: a multidisciplinary research initiative to predict rapid changes in global sea level caused by collapse of marine ice sheets: Proceedings of a workshop cosponsored by the National Science Foundation, Washington, D.C., and the National Aeronautics and Space Administration, Washington, D.C., and held in College Park, Maryland, January 23-25, 1990. Greenbelt, Md: Goddard Space Flight Center, 1990.
Buscar texto completoOmstedt, Anders. The Development of Climate Science of the Baltic Sea Region. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.654.
Texto completoCapítulos de libros sobre el tema "Marine Ice sheet"
Kumar, Rajesh. "Marine Ice Sheet". En Encyclopedia of Earth Sciences Series, 725. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_340.
Texto completoMulder, T. E., H. A. Dijkstra y F. W. Wubs. "Numerical Bifurcation Analysis of Marine Ice Sheet Models". En Computational Methods in Applied Sciences, 503–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91494-7_14.
Texto completoPattyn, Frank, Ann Huyghe, Sang De Brabander y Bert De Smedt. "Role of Transition Zones in Marine Ice Sheet Dynamics". En Collected Reprint Series, 1–10. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782033.ch20.
Texto completoScherer, Reed P. "Quaternary interglacials and the West Antarctic Ice Sheet". En Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, 103–12. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/137gm08.
Texto completoPollard, David y Robert M. Deconto. "A Coupled Ice-Sheet/Ice-Shelf/Sediment Model Applied to a Marine-Margin Flowline: Forced and Unforced Variations". En Glacial Sedimentary Processes and Products, 37–52. Oxford, UK: Blackwell Publishing Ltd., 2009. http://dx.doi.org/10.1002/9781444304435.ch4.
Texto completoSingh, Ashutosh K., Devesh K. Sinha, Vikram Pratap Singh, Kirtiranjan Mallick, Ankush Shrivastava y Tushar Kaushik. "Cenozoic Evolution of Antarctic Ice Sheet, Circum Antarctic Circulation and Antarctic Climate: Evidence from Marine Sedimentary Records". En Earth and Environmental Sciences Library, 47–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87078-2_4.
Texto completoHindmarsh, Richard C. A. "Qualitative Dynamics of Marine Ice Sheets". En Ice in the Climate System, 67–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_5.
Texto completoJohnston, Arch C. "The Effect of Large Ice Sheets on Earthquake Genesis". En Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, 581–99. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2311-9_34.
Texto completoHolmes, R., J. Bulat, I. Hamilton y D. Long. "Morphology of an Ice-Sheet Limit and Constructional Glacially-Fed Slope Front, Faroe-Shetland Channel". En European Margin Sediment Dynamics, 149–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55846-7_24.
Texto completoGrgić, Marijan y Tomislav Bašić. "Radar Satellite Altimetry in Geodesy - Theory, Applications and Recent Developments". En Geodetic Sciences - Theory, Applications and Recent Developments [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97349.
Texto completoActas de conferencias sobre el tema "Marine Ice sheet"
Dowdeswell, Julian A. "THE GEOMORPHIC SIGNATURE OF PAST ICE-SHEET GROUNDING LINES IN THE MARINE RECORD". En GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306091.
Texto completoShakun, Jeremy D., Lee B. Corbett, Paul R. Bierman y Susan H. Zimmerman. "PLIOCENE GREENLAND ICE SHEET GROWTH RECORDED BY IN SITU 10BE DECREASE IN MULTIPLE MARINE SEDIMENT CORES". En GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305299.
Texto completoHemming, Sidney. "MARINE SEDIMENT PROVENANCE EVIDENCE FOR THE EXTENT OF THE LAURENTIDE ICE SHEET DURING THE LAST GLACIAL CYCLE". En GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-379913.
Texto completoDalton, April S., Tamara Pico, Evan J. Gowan, John J. Clague, Steven Forman, Isabelle McMartin, Perrti Sarala y Karin F. Helmens. "REVIEWING GEOLOGICAL AND NUMERICAL EVIDENCE ON THE EXTENT OF THE LAURENTIDE ICE SHEET DURING MARINE ISOTOPE STAGE 3". En GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-380966.
Texto completoChrist, Andrew J. y David R. Marchant. "A TERRESTRIAL PERSPECTIVE OF THE LGM IN MCMURDO SOUND, ANTARCTICA: IMPLICATIONS FOR MARINE ICE SHEET DYNAMICS, ICE FLOW, AND DEGLACIATION OF THE ROSS SEA EMBAYMENT". En GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305311.
Texto completoParker, Shane T. y Jonathan P. Warnock. "THE EFFECT OF A WESTERN ANTARCTIC ICE SHEET COLLAPSE ON NUTRIENT RECYCLING RATES DURING MARINE ISOTOPE STAGE 31: INITIAL FINDINGS". En 53rd Annual GSA Northeastern Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018ne-311175.
Texto completoVenturelli, Ryan, Brad Rosenheim, Christina Davis, Alex Michaud, Brenna Boehman, Brent Christner, Valier Galy et al. "Millennial scale marine incursion into an isolated environment fuels a contemporary subglacial microbial community beneath the West Antarctic Ice Sheet". En Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.13607.
Texto completoLarson, Phillip, Howard D. Mooers, Angela J. Berthold y Kristi M. Kotrapu. "SEDIMENT TRANSPORT CYCLES OF THE LAURENTIDE ICE SHEET I: SOFT TO HARD BED TRANSITION DURING WISCONSIN MARINE ISOTOPE STAGE 5D-2". En 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-348205.
Texto completoBANIK, ARNOB, M. H. KHAN y K. T. TAN. "IMPACT PERFORMANCE COMPARISON OF FIBER REINFORCED COMPOSITE SANDWICH STRUCTURES IN ARCTIC CONDITION". En Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36380.
Texto completoDegnan, John J. y Steven C. Cohen. "Spaceborne picosecond lidars for geoscience and other remote sensing applications". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.thk2.
Texto completoInformes sobre el tema "Marine Ice sheet"
Kerr, D. E. Reconnaissance surficial geology, Brichta Lake, Nunavut, NTS 76-P. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329670.
Texto completoPaulen, R. C., J. M. Rice y M. Ross. Surficial geology, Lac aux Goélands, Quebec, NTS 23-P southeast. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328291.
Texto completoTremblay, T. y M. Lamothe. New contributions to the ice-flow chronology in the Boothia-Lancaster Ice Stream catchment area. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331062.
Texto completoTremblay, T. y M. Lamothe. New contributions to the ice-flow chronology in the Boothia-Lancaster ice-stream catchment area, Nunavut. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331424.
Texto completoSmith, I. R. Surficial geology, La Biche River northwest, Yukon-Northwest Territories, NTS 95-C/11, 12, 13, and 14. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330591.
Texto completoKerr, D. E. Reconnaissance surficial geology, Nose Lake, Nunavut-Northwest Territories, NTS 76-F. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329666.
Texto completoBartolino, Valerio, Birgit Koehler y Lena Bergström, eds. Climate effects on fish in Sweden : Species-Climate Information Sheets for 32 key taxa in marine and coastal waters. Department of Aquatic Resources, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.4lmlt1tq5j.
Texto completoSurficial geology, Dendale Lake, Yukon-Northwest Territories, NTS 95-C/15. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331886.
Texto completo