Literatura académica sobre el tema "Magnetic dipole nanoantenna"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Magnetic dipole nanoantenna".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Magnetic dipole nanoantenna"
Fujii, Minoru y Hiroshi Sugimoto. "(Invited, Digital Presentation) Enhancement of Magnetic Dipole Transition of Molecules By Silicon Nanoparticle Nanoantenna". ECS Meeting Abstracts MA2022-01, n.º 20 (7 de julio de 2022): 1081. http://dx.doi.org/10.1149/ma2022-01201081mtgabs.
Texto completoAgrahari, Rajan y Hadi K. Shamkhi. "Highly Directive All-Dielectric Nanoantenna". Journal of Physics: Conference Series 2015, n.º 1 (1 de noviembre de 2021): 012003. http://dx.doi.org/10.1088/1742-6596/2015/1/012003.
Texto completoKUMAR, V. DINESH, ABHINAV BHARDWAJ, DEEPAK MISHRA y KIYOSHI ASAKAWA. "DIRECTIONAL AND POLARIZATION PROPERTIES OF A PLASMONIC CROSS NANOANTENNA". Journal of Nonlinear Optical Physics & Materials 19, n.º 04 (diciembre de 2010): 517–25. http://dx.doi.org/10.1142/s0218863510005418.
Texto completoXu, Lei, Mohsen Rahmani, Daria Smirnova, Khosro Zangeneh Kamali, Guoquan Zhang, Dragomir Neshev y Andrey Miroshnichenko. "Highly-Efficient Longitudinal Second-Harmonic Generation from Doubly-Resonant AlGaAs Nanoantennas". Photonics 5, n.º 3 (17 de septiembre de 2018): 29. http://dx.doi.org/10.3390/photonics5030029.
Texto completoCastanié, E., R. Vincent, R. Pierrat y R. Carminati. "Absorption by an Optical Dipole Antenna in a Structured Environment". International Journal of Optics 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/452047.
Texto completoKumar, Abhinandan y Nabin Kumar. "Rabi Waves for Excitation of Quantum Nanoantenna with Electrically Controlled Radiation Pattern and Its Application". Bulletin of Pure and Applied Sciences – Physics 42, n.º 2 (22 de diciembre de 2023): 84–88. http://dx.doi.org/10.48165/bpas.2023.42d.2.4.
Texto completoDecker, M., T. Pertsch y I. Staude. "Strong coupling in hybrid metal–dielectric nanoresonators". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2090 (28 de marzo de 2017): 20160312. http://dx.doi.org/10.1098/rsta.2016.0312.
Texto completoKalinic, Boris, Tiziana Cesca, Mirko Trevisani, Andrea Jacassi, Riccardo Sapienza y Giovanni Mattei. "Strong Er3+ radiative emission enhancement by quasi-BIC modes coupling in all-dielectric slot nanoantenna arrays". EPJ Web of Conferences 287 (2023): 05002. http://dx.doi.org/10.1051/epjconf/202328705002.
Texto completoPakizeh, Tavakol. "Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths". Journal of the Optical Society of America B 29, n.º 9 (22 de agosto de 2012): 2446. http://dx.doi.org/10.1364/josab.29.002446.
Texto completoKroychuk, Maria K., Alexander S. Shorokhov, Damir F. Yagudin, Maxim V. Rakhlin, Grigorii V. Klimko, Alexey A. Toropov, Tatiana V. Shubina y Andrey A. Fedyanin. "Quantum Dot Photoluminescence Enhancement in GaAs Nanopillar Oligomers Driven by Collective Magnetic Modes". Nanomaterials 13, n.º 3 (27 de enero de 2023): 507. http://dx.doi.org/10.3390/nano13030507.
Texto completoTesis sobre el tema "Magnetic dipole nanoantenna"
Cui, Lingfei. "Antennes photoniques pour amplifier les interactions entre la lumière et la matière chirale". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS392.
Texto completoThe detection of molecules based on fluorescence or Raman scattering has been widely studied and is currently used in industry and laboratories. However, many organic molecules of interest are chiral, and their chemical and biological properties depend on their enantiomer as well as on the chirality of their secondary structure. The quantity and chirality of biomolecules are classically determined by measuring the differential absorption between the two opposite circular polarizations (chiroptic method). However, this method is limited by the low differential absorption of chiral molecules, which is of the order of 10-3 in the UV part of the spectrum. Plasmonic resonators have the ability to resonantly interact with light and are characterized by a moderate quality factor and a low effective volume. This resonant interaction allows (i) to increase the coupling between molecules and light and (ii) to control the polarization properties of light. So far, the latest advances concern the implementation of nanostructured chiral surfaces with gammadion-type resonators or stacked twisted resonators that interact preferentially with a given helicity of light. However, the mechanism behind the differential response of biomolecules coupled to chiral resonators to circularly polarized light is still unclear, preventing the optimization of such detection. Moreover, in the research published so far, two different chiral sensors are needed to interact with right- and left-handed circularly polarized light, which requires complex calibration procedures. During the course of my PhD, I have studied the use of anisotropic achiral nanostructures to interact with chiral molecules. Indeed, they have the significant advantage over chiral nanostructures of changing the sign of the circular dichroism by controlling the incident polarization or the direction of propagation. Indeed, the symmetries of the electromagnetic field in close proximity to the resonators can be manipulated at will by changing illumination conditions hence providing a unique tool for studying the origin of the electromagnetic coupling between chiral biomolecule and nanoresonators. Consequently, in my PhD project I propose to use plasmonic nanoresonators to increase the light - “chiral matter” interactions in order to detect and study chiral molecules. I will use the concept of achiral plasmonic nanostructures (nanoslits) to develop innovative nanoresonators that will be used, once functionalized, to detect chiral biomolecules with enantiomer sensitivity. Indeed, achiral resonators can generate both signs of chiral fields as opposed to chiral resonators which would make their use very flexible. This work implies characterizing, describing and understanding the origins of chiral fields and how to make them homogeneous. Through the study of nanoslits, I demonstrate numerically and theoretically how to design a nanosource of pure superchiral light, free of any background and for which the sign of the chirality is tunable on-demand in wavelength and polarization. In the perspective, I will present experimental methods that could monitor the CD via fluorescence emission (FDCD for Fluorescence Detected Circular Dichroism) in the case of light harvesting molecules for molecules that need to be excited in the UV, autofluorescence may be used in conjunction with aluminum resonators. Without loss of generality, these considerations lead to the decision of investigating plasmonic resonators with resonance at 680 nm which correspond to the chiral absorption band of LHCII. The idea of blocking the excitation beam to collect only the emission of the chiral molecules leaded to the idea of investigating the resonances of openings in an opaque layer of gold
Actas de conferencias sobre el tema "Magnetic dipole nanoantenna"
Han, Aoxue, Colm Dineen, Md Sakibul Islam, Jerome V. Moloney y Viktoriia E. Babicheva. "Symmetry Breaking and Second-Harmonic Generation in Plasmonic Nanoparticle Arrays". En Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.tu2b.4.
Texto completoCarletti, Luca, Davide Rocco, Andrea Locatelli, Valerio Gili, Giuseppe Leo y Costantino De Angelis. "Enhanced second-harmonic generation driven from magnetic dipole resonance in AlGaAs nanoantennas". En SPIE Photonics Europe, editado por David L. Andrews, Jean-Michel Nunzi y Andreas Ostendorf. SPIE, 2016. http://dx.doi.org/10.1117/12.2225902.
Texto completoGuasoni, M., L. Carletti, D. Neshev y C. De Angelis. "Switching from magnetic to electric dipole in second harmonic generation from all-dielectric nanoantennas". En 2017 IEEE Photonics Conference (IPC). IEEE, 2017. http://dx.doi.org/10.1109/ipcon.2017.8116142.
Texto completo