Literatura académica sobre el tema "Machining. Metals Fiber-reinforced plastics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Machining. Metals Fiber-reinforced plastics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Machining. Metals Fiber-reinforced plastics"
Horváth, Richárd, Róbert Gábor Stadler y Kristóf Andrásfalvy. "Investigation of Milling of Carbon Fiber Reinforced Plastic". Acta Materialia Transylvanica 2, n.º 2 (1 de octubre de 2019): 99–104. http://dx.doi.org/10.33924/amt-2019-02-06.
Texto completoSha, Zhi Hua, Fang Wang y Sheng Fang Zhang. "Drilling Simulation of Carbon Fiber Reinforced Plastic Composites Based on Finite Element Method". Advanced Materials Research 690-693 (mayo de 2013): 2519–22. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2519.
Texto completoJohn, KM, S. Thirumalai Kumaran, Rendi Kurniawan, Ki Moon Park y JH Byeon. "Review on the methodologies adopted to minimize the material damages in drilling of carbon fiber reinforced plastic composites". Journal of Reinforced Plastics and Composites 38, n.º 8 (17 de diciembre de 2018): 351–68. http://dx.doi.org/10.1177/0731684418819822.
Texto completoHocheng, H. y H. Y. Puw. "Machinability of Fiber-Reinforced Thermoplastics in Drilling". Journal of Engineering Materials and Technology 115, n.º 1 (1 de enero de 1993): 146–49. http://dx.doi.org/10.1115/1.2902148.
Texto completoAn, Qinglong, Jie Chen, Xiaojiang Cai, Tingting Peng y Ming Chen. "Thermal characteristics of unidirectional carbon fiber reinforced polymer laminates during orthogonal cutting". Journal of Reinforced Plastics and Composites 37, n.º 13 (8 de abril de 2018): 905–16. http://dx.doi.org/10.1177/0731684418768892.
Texto completoHäusler, Andreas, Kim Torben Werkle, Walther Maier y Hans-Christian Möhring. "Design of Lightweight Cutting Tools". International Journal of Automation Technology 14, n.º 2 (5 de marzo de 2020): 326–35. http://dx.doi.org/10.20965/ijat.2020.p0326.
Texto completoNomura, Kosaku, Naoya Takeuchi y Hiroyuki Sasahara. "Oscillating Finish Grinding of CFRP with Woven Metal Wire Tool Utilizing Plunger Pump Pulsation". International Journal of Automation Technology 12, n.º 6 (5 de noviembre de 2018): 940–46. http://dx.doi.org/10.20965/ijat.2018.p0940.
Texto completoFuruki, Tatsuya, Toshiki Hirogaki, Eiichi Aoyama, Keiji Ogawa, Kiyofumi Inaba y Kazuna Fujiwara. "Investigation of cBN Electroplated End-Mill Shape for CFRP Machining". Materials Science Forum 874 (octubre de 2016): 463–68. http://dx.doi.org/10.4028/www.scientific.net/msf.874.463.
Texto completoKumar, Dhiraj y Suhasini Gururaja. "Abrasive waterjet machining of Ti/CFRP/Ti laminate and multi-objective optimization of the process parameters using response surface methodology". Journal of Composite Materials 54, n.º 13 (5 de noviembre de 2019): 1741–59. http://dx.doi.org/10.1177/0021998319884611.
Texto completoAshrafi, Sina Alizadeh, Safian Sharif, Yahya Mohd Yazid y Ali Davoudinejad. "Assessment of Hole Quality and Thrust Force when Drilling CFRP/Al Stack Using Carbide Tools". Applied Mechanics and Materials 234 (noviembre de 2012): 28–33. http://dx.doi.org/10.4028/www.scientific.net/amm.234.28.
Texto completoTesis sobre el tema "Machining. Metals Fiber-reinforced plastics"
Arola, Dwayne Dale. "The influence of net shape machining on the surface integrity of metals and fiber reinforced plastics /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/7138.
Texto completoHeiderscheit, Timothy Donald. "Comparative study of near-infrared pulsed laser machining of carbon fiber reinforced plastics". Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5946.
Texto completoLong, Fu Cheng y 龍富成. "Investigation of Ultrasonic Vibration Assisted Carbon Fiber Reinforced Plastics Machining Effciency". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/cfxub3.
Texto completo國立勤益科技大學
機械工程系
105
Carbon fiber, having the characteristics of light weight, high strength, high modulus, chemical resistance, low coefficient of thermal expansion and so on, has the potential to replace metallic materials, with its application market focusing on heavy industries such as automobile, aerospace, national defense, etc. Currently carbon fiber, which is considered as one of the ten potential materials under the future trend, is the most used material for aerospace building materials, sports equipment, and 3C products, and is recently being used in the automobile industry and wind energy industry. However, Due to its anisotropy and its excellent characteristics, its processing is difficult. For example, delamination occurs while drilling, which could be reduced to some extent, but could not be completely overcome by using ultrasonic assistance. To overcome the said problem, we need to put sacrifice material under the carbon fiber, which, however, increases processing costs, and may cause severe damage to the fiber surface due to excessive cutting resistance, whereby a whole piece of fiber is peeled off and the internal fibrous tissue is pulled out. Additionally, excessively high tool nose temperature could burn the carbon fiber surface and dissolve the resin, which greatly deteriorates the surface quality, and this issue needs to be addressed. This study was divided into two parts. The first part, concerned with ultrasonic-assisted drilling (UAD) of carbon fiber reinforced plastics (CFRP), investigated the influence of ultrasonic amplitude on export quality. The optimal amplitude was selected for subsequent experiments, where the axial thrust and export quality of general drilling and UAD were compared at different feed speeds. Finally an optical microscope was employed to determine the export quality and the measurement tool wear. The second part, concerned with ultrasonic-assisted milling (UAM), mainly explored the influence of amplitude on surface roughness, as well as the influence of three different cooling mechanisms and two different tool geometries on surface topography and surface roughness. Subsequently an optical microscope was used to measure the tool wear and to observe the cutting forms of different processing methods. The results verified that ultrasound could reduce the delamination phenomenon, reduce axial thrust, and reduce tool wear. However, high-amplitude waves degraded the export quality, while low-amplitude waves were ineffective. Better export quality could be achieved at a frequency of 25 KHz, an amplitude of 5.76μm, a spindle speed of 3185rpm, and a feed speed of 5mm/min. A higher feed speed greatly reduced tool wear, but caused severe delamination. In terms of milling, employing ultrasound-assisted techniques and high-efficiency milling cutters could greatly improve the surface quality, where using a four-blade end mill and carbon dioxide-based low-temperature cooling could achieve a surface roughness of 0.703μm. However, as regards tool wear, they did not achieve as good an effect as does the MQL technique. Using air cooling without assistance of ultrasound mostly resulted in unsatisfactory results. In addition, with the introduction of ultrasound-assisted techniques, the winding problem caused by cutting was resolved, and segmental chips were mostly formed during machining, which was most significant for the MQL processing method.
Ahmadian, Amirali. "Experimental model for predicting cutting forces in machining carbon fiber reinforced polymer composites". Thesis, 2019. http://hdl.handle.net/1828/10878.
Texto completoGraduate
Libros sobre el tema "Machining. Metals Fiber-reinforced plastics"
Ullmann, Falk. Temperaturbestimmung beim Drehen faserverstärkter Kunststoffe. München: C. Hanser, 1992.
Buscar texto completoCapítulos de libros sobre el tema "Machining. Metals Fiber-reinforced plastics"
Obikawa, T., T. Shirakashi y E. Usui. "Finite Element Modelling of Machining of Glass Fiber Reinforced Plastics". En Proceedings of the Thirty-First International Matador Conference, 223–28. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13796-1_35.
Texto completoFreising, Martin, Simon Kothe, Markus Rott, Hendrik Susemihl y Wolfgang Hintze. "Increasing Accuracy of Industrial Robots in Machining of Carbon Fiber Reinforced Plastics". En Lecture Notes in Production Engineering, 115–21. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01964-2_16.
Texto completoNagaraja, R., T. Rangaswamy y K. R. Channakeshava. "Machining of Kevlar Aramid Fiber-Reinforced Plastics (K-1226) Using Solid Carbide Step Drill K44". En Lecture Notes in Mechanical Engineering, 221–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8767-8_18.
Texto completoOh, Sung Hoon. "A Study on the Cutting Force and Machining Condition of the Carbon Fiber Reinforced Plastics by the TiAlN Coated Drill". En Communications in Computer and Information Science, 172–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35248-5_25.
Texto completoA. Rahim, Erween y Hiroyuki Sasahara. "High performance machining of carbon fiber-reinforced plastics". En Sustainable Composites for Aerospace Applications, 211–26. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-102131-6.00010-4.
Texto completoSingh, Inderdeep y Kishore Debnath. "Advanced Machining Techniques for Fiber-Reinforced Polymer Composites". En Materials Science and Engineering, 112–35. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1798-6.ch005.
Texto completoSingh, Inderdeep y Kishore Debnath. "Advanced Machining Techniques for Fiber-Reinforced Polymer Composites". En Processing Techniques and Tribological Behavior of Composite Materials, 317–40. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7530-8.ch011.
Texto completoHan, Chang Dae. "Compression Molding of Thermoset/Fiber Composites". En Rheology and Processing of Polymeric Materials: Volume 2: Polymer Processing. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195187830.003.0019.
Texto completoPhan-Thien, Nhan y Sangtae Kim. "Fundamental Equations". En Microstructures in Elastic Media. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195090864.003.0003.
Texto completoActas de conferencias sobre el tema "Machining. Metals Fiber-reinforced plastics"
Fernando, Palamandadige K. S. C., Meng (Peter) Zhang, Zhijian Pei y Weilong Cong. "Rotary Ultrasonic Machining: Effects of Tool End Angle on Delamination of CFRP Drilling". En ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2863.
Texto completoKrishnaraj, V., A. Prabukarthi, M. Santhosh, M. Senthilkumar y R. Zitoune. "Optimization of Machining Parameters in CFRP/Ti Stacks Drilling". En ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7216.
Texto completoBarnes, Stuart, Pipat Bhudwannachai y Aishah Najiah Dahnel. "Drilling Performance of Carbon Fiber Reinforced Epoxy Composite When Machined Dry, With Conventional Cutting Fluid and With a Cryogenically Cooled Tool". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62246.
Texto completoMori, Mikio, Yoichi Kemmochi, Shigeru Yamaguchi y Kazuo Sekine. "Applications of excimer lasers for machining of fiber-reinforced plastics". En OE/LASE '94, editado por Vern N. Smiley y Frank K. Tittel. SPIE, 1994. http://dx.doi.org/10.1117/12.176669.
Texto completoFernando, P. K. S. C., Z. J. Pei, Meng Zhang, Xiaoxu Song y Weilong Cong. "Rotary Ultrasonic Machining of Carbon Fiber Reinforced Plastics: A Design of Experiment". En ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9391.
Texto completoHenerichs, M., C. Dold, R. Voß y K. Wegener. "Performance of Lasered PCD- and CVD-Diamond Cutting Inserts for Machining Carbon Fiber Reinforced Plastics (CFRP)". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62675.
Texto completoSheikh-Ahmad, Jamal y Rahul Yadav. "Force Prediction in Milling of Carbon Fiber Reinforced Polymers". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81909.
Texto completoKawabata, Tetsuya, Toshiki Hirogaki, Eiichi Aoyama, Masao Nakagawa y Hiromichi Nobe. "Basic Performance of Natural Fiber Bevel Gears Made From Only Bamboo Fibers Extracted With a Machining Center". En ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22236.
Texto completoGhafarizadeh, Seyedbehzad, Jean-François Chatelain y Gilbert Lebrun. "Experimental Investigation to Study Cutting Temperature During Milling of Unidirectional Carbon Fiber Reinforced Plastic". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36767.
Texto completoFernando, Palamandadige, Meng Zhang y Zhijian Pei. "Rotary Ultrasonic Machining of CFRP: Effects of Abrasive Properties". En ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6631.
Texto completo