Artículos de revistas sobre el tema "Machine learning potential"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Machine learning potential".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Mueller, Tim, Alberto Hernandez y Chuhong Wang. "Machine learning for interatomic potential models". Journal of Chemical Physics 152, n.º 5 (7 de febrero de 2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Texto completoNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization". Biotechnology and Bioprocessing 2, n.º 9 (2 de noviembre de 2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Texto completoBarbour, Dennis L. y Jan-Willem A. Wasmann. "Performance and Potential of Machine Learning Audiometry". Hearing Journal 74, n.º 3 (26 de febrero de 2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Texto completoTherrien, Audrey C., Berthié Gouin-Ferland y Mohammad Mehdi Rahimifar. "Potential of edge machine learning for instrumentation". Applied Optics 61, n.º 8 (2 de marzo de 2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Texto completoAwan, Kamran H., S. Satish Kumar y Indu Bharkavi SK. "Potential Role of Machine Learning in Oncology". Journal of Contemporary Dental Practice 20, n.º 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Texto completoDral, Pavlo O., Alec Owens, Alexey Dral y Gábor Csányi. "Hierarchical machine learning of potential energy surfaces". Journal of Chemical Physics 152, n.º 20 (29 de mayo de 2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Texto completoWu, Yuexiang. "Potential pulsars prediction based on machine learning". Theoretical and Natural Science 12, n.º 1 (17 de noviembre de 2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Texto completoAschepkov, Valeriy. "METHODS OF MACHINE LEARNING IN MODERN METROLOGY". Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Texto completoZelinska, Snizhana. "Machine learning: technologies and potential application at mining companies". E3S Web of Conferences 166 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202016603007.
Texto completoSarkar, Soumyadip. "Quantum Machine Learning: A Review". International Journal for Research in Applied Science and Engineering Technology 11, n.º 3 (31 de marzo de 2023): 352–54. http://dx.doi.org/10.22214/ijraset.2023.49421.
Texto completoM, Shah,. "Demystifying Machine Learning". Saudi Journal of Engineering and Technology 9, n.º 07 (9 de julio de 2024): 299–303. http://dx.doi.org/10.36348/sjet.2024.v09i07.004.
Texto completoSrinivasaiah, Bharath. "The Power of Personalized Healthcare: Harnessing the Potential of Machine Learning in Precision Medicine". International Journal of Science and Research (IJSR) 13, n.º 5 (5 de mayo de 2024): 426–29. http://dx.doi.org/10.21275/sr24506012313.
Texto completoChinnala Balakrishna y Rambabu Bommisetti. "Detecting psychological uncertainty using machine learning". International Journal of Science and Research Archive 12, n.º 2 (30 de julio de 2024): 1365–70. http://dx.doi.org/10.30574/ijsra.2024.12.2.1399.
Texto completoNikoulis, Giorgos, Jesper Byggmästar, Joseph Kioseoglou, Kai Nordlund y Flyura Djurabekova. "Machine-learning interatomic potential for W–Mo alloys". Journal of Physics: Condensed Matter 33, n.º 31 (18 de junio de 2021): 315403. http://dx.doi.org/10.1088/1361-648x/ac03d1.
Texto completoWang, Peng-Ju, Jun-Yu Fan, Yan Su y Ji-Jun Zhao. "Energetic potential of hexogen constructed by machine learning". Acta Physica Sinica 69, n.º 23 (2020): 238702. http://dx.doi.org/10.7498/aps.69.20200690.
Texto completoMukherjee, Debashis y Rajesh Biswal. "Machine Learning in Automotive Data Potential, Analytics Power". Auto Tech Review 4, n.º 5 (mayo de 2015): 44–49. http://dx.doi.org/10.1365/s40112-015-0916-7.
Texto completoSun, Lei, Badong Chen, Kar-Ann Toh y Zhiping Lin. "Sequential extreme learning machine incorporating survival error potential". Neurocomputing 155 (mayo de 2015): 194–204. http://dx.doi.org/10.1016/j.neucom.2014.12.029.
Texto completoLorena, Ana C., Luis F. O. Jacintho, Marinez F. Siqueira, Renato De Giovanni, Lúcia G. Lohmann, André C. P. L. F. de Carvalho y Missae Yamamoto. "Comparing machine learning classifiers in potential distribution modelling". Expert Systems with Applications 38, n.º 5 (mayo de 2011): 5268–75. http://dx.doi.org/10.1016/j.eswa.2010.10.031.
Texto completoSharifipour, Behzad, Bahram Gholinejad, Ataollah Shirzadi, Himan Shahabi, Nadhir Al-Ansari, Asghar Farajollahi, Fatemeh Mansorypour y John J. Clague. "Rangeland species potential mapping using machine learning algorithms". Ecological Engineering 189 (abril de 2023): 106900. http://dx.doi.org/10.1016/j.ecoleng.2023.106900.
Texto completoYu, Jingyi. "Product potential user prediction based on machine learning". Highlights in Science, Engineering and Technology 92 (10 de abril de 2024): 146–51. http://dx.doi.org/10.54097/2h70m008.
Texto completoMei, Haojie, Luyao Cheng, Liang Chen, Feifei Wang, Jinfu Li y Lingti Kong. "Development of machine learning interatomic potential for zinc". Computational Materials Science 233 (enero de 2024): 112723. http://dx.doi.org/10.1016/j.commatsci.2023.112723.
Texto completoLee, Chien-Chang, James Yeongjun Park y Wan-Ting Hsu. "Bridging expertise with machine learning and automated machine learning in clinical medicine". Annals of the Academy of Medicine, Singapore 53, n.º 3 - Correct DOI (27 de marzo de 2024): 129–31. http://dx.doi.org/10.47102/annals-acadmedsg.202481.
Texto completoLee, Chien-Chang, James Yeongjun Park y Wan-Ting Hsu. "Bridging expertise with machine learning and automated machine learning in clinical medicine". Annals of the Academy of Medicine, Singapore 53, n.º 3 (27 de marzo de 2024): 129–31. http://dx.doi.org/10.47102/https://doi.org/10.47102/annals-acadmedsg.202481.
Texto completoSamahitha Kaliyuru Ravi, Sameera Kaliyuru Ravi y A. Hema Prabha. "Advent of machine learning in autonomous vehicles". International Journal of Science and Research Archive 13, n.º 1 (30 de septiembre de 2024): 1219–26. http://dx.doi.org/10.30574/ijsra.2024.13.1.1760.
Texto completoKamoun-Abid, Ferdaous, Hounaida Frikha, Amel Meddeb-Makhoulf y Faouzi Zarai. "Automating cloud virtual machines allocation via machine learning". Indonesian Journal of Electrical Engineering and Computer Science 35, n.º 1 (1 de julio de 2024): 191. http://dx.doi.org/10.11591/ijeecs.v35.i1.pp191-202.
Texto completoElhadary, Mohamed, Mervat Mattar, Khalil Al Farsi, Salem Alshemmari, Basel ElSayed, Omar Metwalli, Amgad Elshoeibi, Ahmed Abdelrehim Badr, Awni Alshurafa y Mohamed A. Yassin. "Machine Learning in CLL". Blood 142, Supplement 1 (28 de noviembre de 2023): 7185. http://dx.doi.org/10.1182/blood-2023-179388.
Texto completoPrakash, Ujjwal. "Advanced Dietitian Using Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 05 (8 de mayo de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem33347.
Texto completoShi, Yang. "Research on the Stock Price Prediction Using Machine Learning". Advances in Economics, Management and Political Sciences 22, n.º 1 (13 de septiembre de 2023): 174–79. http://dx.doi.org/10.54254/2754-1169/22/20230307.
Texto completoPatil, Rohit, Priyadarshani Alandikar, Vaibhav Chaudhari, Pradnya Patil y Prof Swarupa Deshpande. "Water Demand Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 12 (31 de diciembre de 2022): 122–28. http://dx.doi.org/10.22214/ijraset.2022.47797.
Texto completoBiswal M, Manas. "The Potential of Machine Learning for Future Mars Exploration". Acceleron Aerospace Journal 1, n.º 6 (30 de diciembre de 2023): 119–20. http://dx.doi.org/10.61359/11.2106-2326.
Texto completoRavindran, Anjana V., Anjana V. J y Meenakshi P. "Prediction of Learning Disability Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 8 (31 de agosto de 2023): 1248–54. http://dx.doi.org/10.22214/ijraset.2023.55332.
Texto completoSharma, Pratibha y Manisha Joshi. "AWS Machine Learning Services". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, n.º 2 (10 de septiembre de 2019): 1171–74. http://dx.doi.org/10.61841/turcomat.v10i2.14390.
Texto completoNagaraju, Dr R. "XSS Attack Detection using Machine Learning Algorithms". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, n.º 12 (1 de diciembre de 2023): 1–11. http://dx.doi.org/10.55041/ijsrem27487.
Texto completoWilliam, Carter, Choki Wangmo y Anjali Ranjan. "Unravelling the application of machine learning in cancer biomarker discovery". Cancer Insight 2, n.º 1 (14 de junio de 2023): 1–8. http://dx.doi.org/10.58567/ci02010001.
Texto completoLevantesi, Susanna, Andrea Nigri y Gabriella Piscopo. "Longevity risk management through Machine Learning: state of the art". Insurance Markets and Companies 11, n.º 1 (25 de noviembre de 2020): 11–20. http://dx.doi.org/10.21511/ins.11(1).2020.02.
Texto completoVeeramani, Sindhu, S. M. Ramesh y B. Gomathy. "Exploring the Potential of Machine Learning in Healthcare Accuracy Improvement". WSEAS TRANSACTIONS ON COMPUTERS 22 (31 de diciembre de 2023): 374–79. http://dx.doi.org/10.37394/23205.2023.22.42.
Texto completoLi, Keqin, Peng Zhao, Shuying Dai, Armando Zhu, Bo Hong, Jiabei Liu, Changsong Wei, Wenqian Huang y Yang Zhang. "Exploring the Impact of Quantum Computing on Machine Learning Performance". Middle East Journal of Applied Science & Technology 07, n.º 02 (2024): 145–61. http://dx.doi.org/10.46431/mejast.2024.7215.
Texto completoPatil, Bhagyashree A., Sri Adithya S y Dr Jayanthi M G. "Detection of Malware using Machine Learning Approach". International Journal for Research in Applied Science and Engineering Technology 11, n.º 8 (31 de agosto de 2023): 736–41. http://dx.doi.org/10.22214/ijraset.2023.55233.
Texto completoRamesh, Banoth, G. Srinivas, P. Ram Praneeth Reddy, M. D. Huraib Rasool, Divya Rawat y Madhulita Sundaray. "Feasible Prediction of Multiple Diseases using Machine Learning". E3S Web of Conferences 430 (2023): 01051. http://dx.doi.org/10.1051/e3sconf/202343001051.
Texto completoArora, Aaryan y Nirmalya Basu. "Machine Learning in Modern Healthcare". International Journal of Advanced Medical Sciences and Technology 3, n.º 4 (30 de junio de 2023): 12–18. http://dx.doi.org/10.54105/ijamst.d3037.063423.
Texto completoLiu, Jinyan, Guanghao Zhang, Jianyong Wang, Hong Zhang y Ye Han. "Research on Cu-Sn machine learning interatomic potential with active learning strategy". Computational Materials Science 246 (enero de 2025): 113450. http://dx.doi.org/10.1016/j.commatsci.2024.113450.
Texto completoChen, Samuel Yen-Chi y Shinjae Yoo. "Federated Quantum Machine Learning". Entropy 23, n.º 4 (13 de abril de 2021): 460. http://dx.doi.org/10.3390/e23040460.
Texto completoMukilan, K., K. Thaiyalnayaki, Yagya Dutta Dwivedi, J. Samson Isaac, Amarjeet Poonia, Arvind Sharma, Essam A. Al-Ammar, Saikh Mohammad Wabaidur, B. B. Subramanian y Adane Kassa. "Prediction of Rooftop Photovoltaic Solar Potential Using Machine Learning". International Journal of Photoenergy 2022 (25 de mayo de 2022): 1–8. http://dx.doi.org/10.1155/2022/1541938.
Texto completoVaganov, A. V., V. F. Zaikov, O. S. Krotova, A. I. Musokhranov, Z. V. Pokalyakin y L. A. Khvorova. "Modeling a Potential Plant Habitat Using Machine Learning Methods". Izvestiya of Altai State University, n.º 4(126) (9 de septiembre de 2022): 85–92. http://dx.doi.org/10.14258/izvasu(2022)4-13.
Texto completoZennaro, Federica, Elisa Furlan, Christian Simeoni, Silvia Torresan, Sinem Aslan, Andrea Critto y Antonio Marcomini. "Exploring machine learning potential for climate change risk assessment". Earth-Science Reviews 220 (septiembre de 2021): 103752. http://dx.doi.org/10.1016/j.earscirev.2021.103752.
Texto completoCesarini, Luigi, Rui Figueiredo, Beatrice Monteleone y Mario L. V. Martina. "The potential of machine learning for weather index insurance". Natural Hazards and Earth System Sciences 21, n.º 8 (11 de agosto de 2021): 2379–405. http://dx.doi.org/10.5194/nhess-21-2379-2021.
Texto completoErharter, Georg H., Jonas Weil, Franz Tschuchnigg y Thomas Marcher. "Potential applications of machine learning for BIM in tunnelling". Geomechanics and Tunnelling 15, n.º 2 (abril de 2022): 216–21. http://dx.doi.org/10.1002/geot.202100076.
Texto completoIvanciuc, Ovidiu. "Weka Machine Learning for Predicting the Phospholipidosis Inducing Potential". Current Topics in Medicinal Chemistry 8, n.º 18 (1 de diciembre de 2008): 1691–709. http://dx.doi.org/10.2174/156802608786786589.
Texto completoRowe, Patrick, Volker L. Deringer, Piero Gasparotto, Gábor Csányi y Angelos Michaelides. "An accurate and transferable machine learning potential for carbon". Journal of Chemical Physics 153, n.º 3 (21 de julio de 2020): 034702. http://dx.doi.org/10.1063/5.0005084.
Texto completoReich, Yoram y Steven J. Fenves. "The potential of machine learning techniques for expert systems". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3, n.º 3 (agosto de 1989): 175–93. http://dx.doi.org/10.1017/s0890060400001219.
Texto completo