Literatura académica sobre el tema "Machine learning potential"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Machine learning potential".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Machine learning potential"
Mueller, Tim, Alberto Hernandez y Chuhong Wang. "Machine learning for interatomic potential models". Journal of Chemical Physics 152, n.º 5 (7 de febrero de 2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Texto completoNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization". Biotechnology and Bioprocessing 2, n.º 9 (2 de noviembre de 2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Texto completoBarbour, Dennis L. y Jan-Willem A. Wasmann. "Performance and Potential of Machine Learning Audiometry". Hearing Journal 74, n.º 3 (26 de febrero de 2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Texto completoTherrien, Audrey C., Berthié Gouin-Ferland y Mohammad Mehdi Rahimifar. "Potential of edge machine learning for instrumentation". Applied Optics 61, n.º 8 (2 de marzo de 2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Texto completoAwan, Kamran H., S. Satish Kumar y Indu Bharkavi SK. "Potential Role of Machine Learning in Oncology". Journal of Contemporary Dental Practice 20, n.º 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Texto completoDral, Pavlo O., Alec Owens, Alexey Dral y Gábor Csányi. "Hierarchical machine learning of potential energy surfaces". Journal of Chemical Physics 152, n.º 20 (29 de mayo de 2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Texto completoWu, Yuexiang. "Potential pulsars prediction based on machine learning". Theoretical and Natural Science 12, n.º 1 (17 de noviembre de 2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Texto completoAschepkov, Valeriy. "METHODS OF MACHINE LEARNING IN MODERN METROLOGY". Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Texto completoZelinska, Snizhana. "Machine learning: technologies and potential application at mining companies". E3S Web of Conferences 166 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202016603007.
Texto completoSarkar, Soumyadip. "Quantum Machine Learning: A Review". International Journal for Research in Applied Science and Engineering Technology 11, n.º 3 (31 de marzo de 2023): 352–54. http://dx.doi.org/10.22214/ijraset.2023.49421.
Texto completoTesis sobre el tema "Machine learning potential"
Ohlsson, Caroline. "Exploring the potential of machine learning : How machine learning can support financial risk management". Thesis, Uppsala universitet, Företagsekonomiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324684.
Texto completoHu, Jinli. "Potential based prediction markets : a machine learning perspective". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29000.
Texto completoGustafson, Jonas. "Using Machine Learning to Identify Potential Problem Gamblers". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163640.
Texto completoVeit, Max David. "Designing a machine learning potential for molecular simulation of liquid alkanes". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290295.
Texto completoHellsing, Edvin y Joel Klingberg. "It’s a Match: Predicting Potential Buyers of Commercial Real Estate Using Machine Learning". Thesis, Uppsala universitet, Institutionen för informatik och media, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445229.
Texto completoDenna uppsats har undersökt utvecklingen av och potentiella effekter med ett intelligent beslutsstödssystem (IDSS) för att prediktera potentiella köpare av kommersiella fastigheter. Det övergripande behovet av ett sådant system har identifierats existerar på grund av informtaionsöverflöd, vilket systemet avser att reducera. Genom att förkorta bearbetningstiden av data kan tid allokeras till att skapa förståelse av omvärlden med kollegor. Systemarkitekturen som undersöktes bestod av att gruppera köpare av kommersiella fastigheter i kluster baserat på deras köparegenskaper, och sedan träna en prediktionsmodell på historiska transkationsdata från den svenska fastighetsmarknaden från Lantmäteriet. Prediktionsmodellen tränades på att prediktera vilken av grupperna som mest sannolikt kommer köpa en given fastighet. Tre olika klusteralgoritmer användes och utvärderades för grupperingen, en densitetsbaserad, en centroidbaserad och en hierarkiskt baserad. Den som presterade bäst var var den centroidbaserade (K-means). Tre övervakade maskininlärningsalgoritmer användes och utvärderades för prediktionerna. Dessa var Naive Bayes, Random Forests och Support Vector Machines. Modellen baserad p ̊a Random Forests presterade bäst, med en noggrannhet om 99,9%.
Ntsaluba, Kuselo Ntsika. "AI/Machine learning approach to identifying potential statistical arbitrage opportunities with FX and Bitcoin Markets". Master's thesis, Faculty of Commerce, 2019. http://hdl.handle.net/11427/31185.
Texto completoSkabar, Andrew Alojz. "Inductive learning techniques for mineral potential mapping". Thesis, Queensland University of Technology, 2001.
Buscar texto completoSyed, Tahir Qasim. "Analysis of the migratory potential of cancerous cells by image preprocessing, segmentation and classification". Thesis, Evry-Val d'Essonne, 2011. http://www.theses.fr/2011EVRY0041/document.
Texto completoThis thesis is part of a broader research project which aims to analyze the potential migration of cancer cells. As part of this doctorate, we are interested in the use of image processing to count and classify cells present in an image acquired usinga microscope. The partner biologists of this project study the influence of the environment on the migratory behavior of cancer cells from cell cultures grown on different cancer cell lines. The processing of biological images has so far resulted in a significant number of publications, but in the case discussed here, since the protocol for the acquisition of images acquired was not fixed, the challenge was to propose a chain of adaptive processing that does not constrain the biologists in their research. Four steps are detailed in this paper. The first concerns the definition of pre-processing steps to homogenize the conditions of acquisition. The choice to use the image of standard deviations rather than the brightness is one of the results of this first part. The second step is to count the number of cells present in the image. An original filter, the so-called “halo” filter, that reinforces the centre of the cells in order to facilitate counting, has been proposed. A statistical validation step of the centres affords more reliability to the result. The stage of image segmentation, undoubtedly the most difficult, constitutes the third part of this work. This is a matter of extracting images each containing a single cell. The choice of segmentation algorithm was that of the “watershed”, but it was necessary to adapt this algorithm to the context of images included in this study. The proposal to use a map of probabilities as input yielded a segmentation closer to the edges of cells. As against this method leads to an over-segmentation must be reduced in order to move towards the goal: “one region = one cell”. For this algorithm the concept of using a cumulative hierarchy based on mathematical morphology has been developed. It allows the aggregation of adjacent regions by working on a tree representation ofthese regions and their associated level. A comparison of the results obtained by this method with those proposed by other approaches to limit over-segmentation has allowed us to prove the effectiveness of the proposed approach. The final step of this work consists in the classification of cells. Three classes were identified: spread cells (mesenchymal migration), “blebbing” round cells (amoeboid migration) and “smooth” round cells (intermediate stage of the migration modes). On each imagette obtained at the end of the segmentation step, intensity, morphological and textural features were calculated. An initial analysis of these features has allowed us to develop a classification strategy, namely to first separate the round cells from spread cells, and then separate the “smooth” and “blebbing” round cells. For this we divide the parameters into two sets that will be used successively in Two the stages of classification. Several classification algorithms were tested, to retain in the end, the use of two neural networks to obtain over 80% of good classification between long cells and round cells, and nearly 90% of good Classification between “smooth” and “blebbing” round cells
Egieyeh, Samuel Ayodele. "Computational strategies to identify, prioritize and design potential antimalarial agents from natural products". University of the Western Cape, 2015. http://hdl.handle.net/11394/5058.
Texto completoIntroduction: There is an exigent need to develop novel antimalarial drugs in view of the mounting disease burden and emergent resistance to the presently used drugs against the malarial parasites. A large amount of natural products, especially those used in ethnomedicine for malaria, have shown varying in-vitro antiplasmodial activities. Facilitating antimalarial drug development from this wealth of natural products is an imperative and laudable mission to pursue. However, the limited resources, high cost, low prospect and the high cost of failure during preclinical and clinical studies might militate against pursue of this mission. Chemoinformatics techniques can simulate and predict essential molecular properties required to characterize compounds thus eliminating the cost of equipment and reagents to conduct essential preclinical studies, especially on compounds that may fail during drug development. Therefore, applying chemoinformatics techniques on natural products with in-vitro antiplasmodial activities may facilitate identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and high likelihood for development into antimalarial drugs. In addition, unique structural features mined from these natural products may be templates to design new potential antimalarial compounds. Method: Four chemoinformatics techniques were applied on a collection of selected natural products with in-vitro antiplasmodial activity (NAA) and currently registered antimalarial drugs (CRAD): molecular property profiling, molecular scaffold analysis, machine learning and design of a virtual compound library. Molecular property profiling included computation of key molecular descriptors, physicochemical properties, molecular similarity analysis, estimation of drug-likeness, in-silico pharmacokinetic profiling and exploration of structure-activity landscape. Analysis of variance was used to assess statistical significant differences in these parameters between NAA and CRAD. Next, molecular scaffold exploration and diversity analyses were performed on three datasets (NAA, CRAD and malarial data from Medicines for Malarial Ventures (MMV)) using scaffold counts and cumulative scaffold frequency plots. Scaffolds from the NAA were compared to those from CRAD and MMV. A Scaffold Tree was also generated for all the datasets. Thirdly, machine learning approaches were used to build four regression and four classifier models from bioactivity data of NAA using molecular descriptors and molecular fingerprints. Models were built and refined by leave-one-out cross-validation and evaluated with an independent test dataset. Applicability domain (AD), which defines the limit of reliable predictability by the models, was estimated from the training dataset and validated with the test dataset. Possible chemical features associated with reported antimalarial activities of the compounds were also extracted. Lastly, virtual compound libraries were generated with the unique molecular scaffolds identified from the NAA. The virtual compounds generated were characterized by evaluating selected molecular descriptors, toxicity profile, structural diversity from CRAD and prediction of antiplasmodial activity. Results: From the molecular property profiling, a total of 1040 natural products were selected and a total of 13 molecular descriptors were analyzed. Significant differences were observed between the natural products with in-vitro antiplasmodial activities (NAA) and currently registered antimalarial drugs (CRAD) for at least 11 of the molecular descriptors. Molecular similarity and chemical space analysis identified NAA that were structurally diverse from CRAD. Over 50% of NAA with desirable drug-like properties were identified. However, nearly 70% of NAA were identified as potentially "promiscuous" compounds. Structure-activity landscape analysis highlighted compound pairs that formed "activity cliffs". In all, prioritization strategies for the natural products with in-vitro antiplasmodial activities were proposed. The scaffold exploration and analysis results revealed that CRAD exhibited greater scaffold diversity, followed by NAA and MMV respectively. Unique scaffolds that were not contained in any other compounds in the CRAD datasets were identified in NAA. The Scaffold Tree showed the preponderance of ring systems in NAA and identified virtual scaffolds, which maybe potential bioactive compounds or elucidate the NAA possible synthetic routes. From the machine learning study, the regression and classifier models that were most suitable for NAA were identified as model tree M5P (correlation coefficient = 0.84) and Sequential Minimization Optimization (accuracy = 73.46%) respectively. The test dataset fitted into the applicability domain (AD) defined by the training dataset. The “amine” group was observed to be essential for antimalarial activity in both NAA and MMV dataset but hydroxyl and carbonyl groups may also be relevant in the NAA dataset. The results of the characterization of the virtual compound library showed significant difference (p value < 0.05) between the virtual compound library and currently registered antimalarial drugs in some molecular descriptors (molecular weight, log partition coefficient, hydrogen bond donors and acceptors, polar surface area, shape index, chiral centres, and synthetic feasibility). Tumorigenic and mutagenic substructures were not observed in a large proportion (> 90%) of the virtual compound library. The virtual compound libraries showed sufficient diversity in structures and majority were structurally diverse from currently registered antimalarial drugs. Finally, up to 70% of the virtual compounds were predicted as active antiplasmodial agents. Conclusions:Molecular property profiling of natural products with in-vitro antiplasmodial activities (NAA) and currently registered antimalarial drugs (CRAD) produced a wealth of information that may guide decisions and facilitate antimalarial drug development from natural products and led to a prioritized list of natural products with in-vitro antiplasmodial activities. Molecular scaffold analysis identified unique scaffolds and virtual scaffolds from NAA that possess desirable drug-like properties, which make them ideal starting points for molecular antimalarial drug design. The machine learning study built, evaluated and identified amply accurate regression and classifier accurate models that were used for virtual screening of natural compound libraries to mine possible antimalarial compounds without the expense of bioactivity assays. Finally, a good amount of the virtual compounds generated were structurally diverse from currently registered antimalarial drugs and potentially active antiplasmodial agents. Filtering and optimization may lead to a collection of virtual compounds with unique chemotypes that may be synthesized and added to screening deck against Plasmodium.
Nyman, Måns y Caner Naim Ulug. "Exploring the Potential for Machine Learning Techniques to Aid in Categorizing Electron Trajectories during Magnetic Reconnection". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279982.
Texto completoMagnetisk rekonnektion påverkar rymdvädret som har en direkt påverkan på våra nutida teknologiska system. Således kan fenomenet ge allvarliga konsekvenser för människor. Forskare inom detta fält tror att elektrondynamiken spelar en viktig roll i magnetisk rekonnektion. Magnetisk rekonnektion är ett ämne som har studerats under lång tid men ännu förblir många aspekter av fenomenet outforskade. Under magnetisk rekonnektion kan elektroner accelereras till höga hastigheter. En stor mängd studier har gjorts angående trajektorierna som dessa elektroner uppvisar och forskare som är aktiva inom detta forskningsområde skulle enkelt kunna bestämma vilken sorts trajektoria en specifik elektron uppvisar givet en grafisk illustration av sagda trajektoria. Att försöka göra detta för ett mer realistiskt antal elektroner manuellt är dock ingen enkel eller effektiv uppgift att ta sig an. Genom användning av Maskininlärningstekniker för att försöka kategorisera dessa trajektorier skulle denna process kunna göras mycket mer effektiv. Ännu har dock inga försök att göra detta gjorts. I denna uppsats gjordes ett försök att besvara hur väl vissa Maskinlärningstekniker presterar i detta avseende. Principal component analysis och K-means clustering var huvudmetoderna som användes, applicerade med olika sorters förbehandling av den givna datan. Elbow-metoden användes för att hitta det optimala K-värdet och kompletterades av Self-Organizing Maps. Silhouette coefficient användes för att mäta resultaten av dessa metoder. Förbehandlingsmetoderna First-centering och Mean-centering gav de två högsta siluett-koefficienterna och uppvisade således de bästa kvantitativa resultaten. Inspektion av klustrarna pekade dock på avsaknad av perfekt överlappning, både mellan klasserna som upptäcktes av de tillämpade metoderna samt klasserna som har identifierats i tidigare artiklar inom fysik. Trots detta visade sig Maskininlärningsmetoder besitta viss potential som är värt att utforska i större detalj i framtida studier inom fältet magnetisk rekonnektion.
Libros sobre el tema "Machine learning potential"
Bennaceur, Amel, Reiner Hähnle y Karl Meinke, eds. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Texto completoPolyakova, Anna, Tat'yana Sergeeva y Irina Kitaeva. The continuous formation of the stochastic culture of schoolchildren in the context of the digital transformation of general education. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1876368.
Texto completoTaha, Zahari, Rabiu Muazu Musa, Mohamad Razali Abdullah y Anwar P.P.Abdul Majeed. Machine Learning in Sports: Identifying Potential Archers. Springer, 2018.
Buscar texto completoPumperla, Max, Alex Tellez y Michal Malohlava. Mastering Machine Learning with Spark 2.x: Harness the potential of machine learning, through spark. Packt Publishing - ebooks Account, 2017.
Buscar texto completoQuantum Machine Learning: Unleashing Potential in Science and Industry. Primedia eLaunch LLC, 2023.
Buscar texto completoNagel, Stefan. Machine Learning in Asset Pricing. Princeton University Press, 2021. http://dx.doi.org/10.23943/princeton/9780691218700.001.0001.
Texto completoAI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Buscar texto completoJaswal, Gaurav, Vivek Kanhangad y Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Buscar texto completoJaswal, Gaurav, Vivek Kanhangad y Raghavendra Ramachandra. AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges. Taylor & Francis Group, 2020.
Buscar texto completoU.S. Air Force Enlisted Classification and Reclassification: Potential Improvements Using Machine Learning and Optimization Models. RAND Corporation, 2022. http://dx.doi.org/10.7249/rr-a284-1.
Texto completoCapítulos de libros sobre el tema "Machine learning potential"
Muazu Musa, Rabiu, Zahari Taha, Anwar P. P. Abdul Majeed y Mohamad Razali Abdullah. "Psychological Variables in Ascertaining Potential Archers". En Machine Learning in Sports, 21–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2592-2_3.
Texto completoMookambal, M. Adithi y S. Gokulakrishnan. "Potential Subscriber Detection Using Machine Learning". En Advances in Intelligent Systems and Computing, 389–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51859-2_36.
Texto completoLorena, Ana C., Marinez F. de Siqueira, Renato De Giovanni, André C. P. L. F. de Carvalho y Ronaldo C. Prati. "Potential Distribution Modelling Using Machine Learning". En New Frontiers in Applied Artificial Intelligence, 255–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69052-8_27.
Texto completoMuazu Musa, Rabiu, Zahari Taha, Anwar P. P. Abdul Majeed y Mohamad Razali Abdullah. "Psycho-Fitness Parameters in the Identification of High-Potential Archers". En Machine Learning in Sports, 37–44. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2592-2_5.
Texto completoNagabhushan, P., Sanjay Kumar Sonbhadra, Narinder Singh Punn y Sonali Agarwal. "Towards Machine Learning to Machine Wisdom: A Potential Quest". En Big Data Analytics, 261–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93620-4_19.
Texto completoKhine, Myint Swe. "Exploring the Potential of Machine Learning in Educational Research". En Machine Learning in Educational Sciences, 3–8. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9379-6_1.
Texto completoSharma, Shashi, Soma Kumawat y Kumkum Garg. "Predicting Student Potential Using Machine Learning Techniques". En Advances in Intelligent Systems and Computing, 485–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2594-7_40.
Texto completoHu, Gebiao, Zhichi Lin, Zheng Guo, Ruiqing Xu y Xiao Zhang. "Research on Potential Threat Identification Algorithm for Electric UAV Network Communication". En Machine Learning for Cyber Security, 649–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20096-0_49.
Texto completoMuazu Musa, Rabiu, Anwar P. P. Abdul Majeed, Norlaila Azura Kosni y Mohamad Razali Abdullah. "Physical Fitness Parameters in the Identification of High-Potential Sepak Takraw Players". En Machine Learning in Team Sports, 41–48. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3219-1_5.
Texto completoYang, Xianhai, Huihui Liu, Rebecca Kusko y Huixiao Hong. "ED Profiler: Machine Learning Tool for Screening Potential Endocrine-Disrupting Chemicals". En Machine Learning and Deep Learning in Computational Toxicology, 243–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20730-3_10.
Texto completoActas de conferencias sobre el tema "Machine learning potential"
S, Thanigaivelu P., Priyanka Dash, Sravan Kumar G, S. Viveka, Vijayasri Nidadavolu y V. Gautham. "Investigating the Potential of Self-Supervised Learning in Adversarial Machine Learning". En 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/acroset62108.2024.10743375.
Texto completoCérin, Christophe, Walid Saad, Congfeng Jiang y Emna Mekni. "Where are the optimization potential of machine learning kernels?" En 2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM), 130–36. IEEE, 2019. http://dx.doi.org/10.1109/datacom.2019.00028.
Texto completoGarg, Swati, Chandra Sekhar y Lov Kumar. "Unlocking Potential: A Machine Learning Approach to Job Category Prediction". En 2024 IEEE Region 10 Symposium (TENSYMP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752119.
Texto completoXing, Shuaifei, Hankiz Yilahun y Askar Hamdulla. "Enhancing Knowledge Graph Completion by Extracting Potential Positive Examples". En 2024 IEEE 5th International Conference on Pattern Recognition and Machine Learning (PRML), 177–83. IEEE, 2024. https://doi.org/10.1109/prml62565.2024.10779715.
Texto completoPatil, Sachin C., Sairam Madasu, Krishna J. Rolla, Ketan Gupta y N. Yuvaraj. "Examining the Potential of Machine Learning in Reducing Prescription Drug Costs". En 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724434.
Texto completoP, Dinusha, Subha Sreekumar y Lijiya A. "Detection of Potential Specific Learning Disabilities in Children through Handwriting Analysis Using Machine Learning". En 2024 IEEE Region 10 Symposium (TENSYMP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752261.
Texto completoJin, Bolai. "Unlocking the Potential of Raw Images for Object Detection with YOLOv8 and BOT-SORT Techniques". En 2024 5th International Conference on Machine Learning and Computer Application (ICMLCA), 252–57. IEEE, 2024. http://dx.doi.org/10.1109/icmlca63499.2024.10754493.
Texto completoDuan, Dongliang, Weifeng Liu, Pengwen Chen, Murali Rao y Jose C. Principe. "Variance and Bias Analysis of Information Potential and Symmetric Information Potential". En 2007 IEEE Workshop on Machine Learning for Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/mlsp.2007.4414339.
Texto completoBalyakin, I. A. y A. A. Rempel. "Machine learning interatomic potential for molten TiZrHfNb". En THE VII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032302.
Texto completoAliod, Carles. "Machine learning the C5H5 potential energy surface." En Proposed for presentation at the Unimolecular reactions Faraday Discussion held June 22-24, 2022 in Oxford, United Kingdom. US DOE, 2022. http://dx.doi.org/10.2172/2003611.
Texto completoInformes sobre el tema "Machine learning potential"
Lundquist, Sheng. Exploring the Potential of Sparse Coding for Machine Learning. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.7484.
Texto completoMusser, Micah y Ashton Garriott. Machine Learning and Cybersecurity: Hype and Reality. Center for Security and Emerging Technology, junio de 2021. http://dx.doi.org/10.51593/2020ca004.
Texto completoNickerson, Jeffrey, Kalle Lyytinen y John L. King. Automated Vehicles: A Human/Machine Co-learning Perspective. SAE International, abril de 2022. http://dx.doi.org/10.4271/epr2022009.
Texto completoLewin, Alex, Karla Diaz-Ordaz, Chris Bonell, James Hargreaves y Edoardo Masset. Machine learning for impact evaluation in CEDIL-funded studies: an ex ante lesson learning paper. Centre for Excellence and Development Impact and Learning (CEDIL), abril de 2023. http://dx.doi.org/10.51744/llp3.
Texto completoTaylor, Michael y Nicholas Lubbers. IMS Rapid Response 2024 Summary Report: A Machine Learning Potential for the Periodic Table. Office of Scientific and Technical Information (OSTI), octubre de 2024. http://dx.doi.org/10.2172/2460463.
Texto completoBurton, Simon. The Path to Safe Machine Learning for Automotive Applications. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, octubre de 2023. http://dx.doi.org/10.4271/epr2023023.
Texto completoDutta, Sourav, Anna Wagner, Theadora Hall y Nawa Raj Pradhan. Data-driven modeling of groundwater level using machine learning. Engineer Research and Development Center (U.S.), mayo de 2024. http://dx.doi.org/10.21079/11681/48452.
Texto completoOgunbire, Abimbola, Panick Kalambay, Hardik Gajera y Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, diciembre de 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Texto completoAlonso-Robisco, Andrés, José Manuel Carbó y José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Madrid: Banco de España, febrero de 2023. http://dx.doi.org/10.53479/29594.
Texto completode Luis, Mercedes, Emilio Rodríguez y Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, septiembre de 2023. http://dx.doi.org/10.53479/33560.
Texto completo