Artículos de revistas sobre el tema "Machine Learning Informé"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Machine Learning Informé".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Shoureshi, R., D. Swedes y R. Evans. "Learning Control for Autonomous Machines". Robotica 9, n.º 2 (abril de 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Texto completoPateras, Joseph, Pratip Rana y Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning". Applied Sciences 13, n.º 12 (7 de junio de 2023): 6892. http://dx.doi.org/10.3390/app13126892.
Texto completoMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng et al. "Soil Science-Informed Machine Learning". Geoderma 452 (diciembre de 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Texto completoXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco y Marco Leonetti. "Physics-informed machine learning for microscopy". EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Texto completoZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu y Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils". INFORM International News on Fats, Oils, and Related Materials 31, n.º 4 (1 de abril de 2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Texto completoSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly". Annual Review of Vision Science 5, n.º 1 (15 de septiembre de 2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Texto completoArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan y Philip T. Thiem. "Historical maps inform landform cognition in machine learning". Abstracts of the ICA 6 (11 de agosto de 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Texto completoKarimpouli, Sadegh y Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation". Geoscience Frontiers 11, n.º 6 (noviembre de 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Texto completoZhang, Xi. "Application of Machine Learning in Stock Price Analysis". Highlights in Science, Engineering and Technology 107 (15 de agosto de 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Texto completoLiu, Yang, Ruo Jia, Jieping Ye y Xiaobo Qu. "How machine learning informs ride-hailing services: A survey". Communications in Transportation Research 2 (diciembre de 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Texto completoSchwartz, Oscar. "Competing Visions for AI". Digital Culture & Society 4, n.º 1 (1 de marzo de 2018): 87–106. http://dx.doi.org/10.14361/dcs-2018-0107.
Texto completoWang, Yingxu, Yousheng Tian y Kendal Hu. "Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra". International Journal of Cognitive Informatics and Natural Intelligence 5, n.º 3 (julio de 2011): 1–29. http://dx.doi.org/10.4018/ijcini.2011070101.
Texto completoPandey, Mrs Arjoo. "Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 8 (31 de agosto de 2023): 864–69. http://dx.doi.org/10.22214/ijraset.2023.55224.
Texto completoHancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions". Evidence Based Library and Information Practice 19, n.º 2 (14 de junio de 2024): 133–35. http://dx.doi.org/10.18438/eblip30521.
Texto completoBerk, Richard y Jordan Hyatt. "Machine Learning Forecasts of Risk to Inform Sentencing Decisions". Federal Sentencing Reporter 27, n.º 4 (1 de abril de 2015): 222–28. http://dx.doi.org/10.1525/fsr.2015.27.4.222.
Texto completoSedej, Owen, Eric Mbonimpa, Trevor Sleight y Jeremy Slagley. "Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review". Journal of Energy and Power Technology 4, n.º 3 (18 de febrero de 2022): 1. http://dx.doi.org/10.21926/jept.2203027.
Texto completoMasamah, Ulfa y Dadan Sumardani. "Utilization of The Thrasher and Rice Mill Machines in Composition Function Learning: A Hypothetical Learning Trajectory Design". Hipotenusa : Journal of Mathematical Society 3, n.º 2 (28 de diciembre de 2021): 144–57. http://dx.doi.org/10.18326/hipotenusa.v3i2.5994.
Texto completoPazzani, Michael, Severine Soltani, Robert Kaufman, Samson Qian y Albert Hsiao. "Expert-Informed, User-Centric Explanations for Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junio de 2022): 12280–86. http://dx.doi.org/10.1609/aaai.v36i11.21491.
Texto completoGao, Kaifu, Dong Chen, Alfred J. Robison y Guo-Wei Wei. "Proteome-Informed Machine Learning Studies of Cocaine Addiction". Journal of Physical Chemistry Letters 12, n.º 45 (9 de noviembre de 2021): 11122–34. http://dx.doi.org/10.1021/acs.jpclett.1c03133.
Texto completoBarmparis, G. D. y G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning". Journal of the Optical Society of America B 38, n.º 9 (2 de agosto de 2021): C120. http://dx.doi.org/10.1364/josab.430206.
Texto completoPilania, G., K. J. McClellan, C. R. Stanek y B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery". Journal of Chemical Physics 148, n.º 24 (28 de junio de 2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Texto completoBai, Tao y Pejman Tahmasebi. "Accelerating geostatistical modeling using geostatistics-informed machine Learning". Computers & Geosciences 146 (enero de 2021): 104663. http://dx.doi.org/10.1016/j.cageo.2020.104663.
Texto completoLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazzino, Lorenzo Rosasco y Agnese Seminara. "Physics informed machine learning for wind speed prediction". Energy 268 (abril de 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Texto completoTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers y Neil D. Sims. "Resource-efficient machining through physics-informed machine learning". Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Texto completoKapoor, Taniya, Hongrui Wang, Alfredo Núñez y Rolf Dollevoet. "Physics-informed machine learning for moving load problems". Journal of Physics: Conference Series 2647, n.º 15 (1 de junio de 2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Texto completoBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya y Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting". ECS Meeting Abstracts MA2024-01, n.º 2 (9 de agosto de 2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Texto completoCele, Nomfundo, Alain Kibangou y Walter Musakwa. "Machine Learning Analysis of Informal Minibus Taxi Driving". ITM Web of Conferences 69 (2024): 03003. https://doi.org/10.1051/itmconf/20246903003.
Texto completoThete, Prof Sharda, Siddheshwar Midgule, Nikesh Konde y Suraj Kale. "Malware Detection Using Machine Learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 11 (30 de noviembre de 2022): 1942–45. http://dx.doi.org/10.22214/ijraset.2022.47682.
Texto completoMidgule, Siddheshwar. "Malware Detection Using Machine Learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 5 (31 de mayo de 2023): 4755–58. http://dx.doi.org/10.22214/ijraset.2023.52704.
Texto completoLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee y Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning". Journal of the Acoustical Society of America 152, n.º 4 (octubre de 2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Texto completoChen, James Ming, Mira Zovko, Nika Šimurina y Vatroslav Zovko. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution". International Journal of Environmental Research and Public Health 18, n.º 16 (17 de agosto de 2021): 8688. http://dx.doi.org/10.3390/ijerph18168688.
Texto completoShah, Chirag Vinalbhai. "Transforming Retail: The Impact of AI and Machine Learning on Big Data Analytics". Global Research and Development Journals 8, n.º 8 (1 de agosto de 2023): 1–8. http://dx.doi.org/10.70179/grdjev09i100010.
Texto completoRavi, Aravind. "Optimizing Retail Operations: The Role of Machine Learning and Big Data in Data Science". Global Research and Development Journals 9, n.º 6 (5 de junio de 2024): 1–10. http://dx.doi.org/10.70179/grdjev09i100015.
Texto completoK., Mrs Tejaswi. "Unmasking DeepFakes Using Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 03 (30 de marzo de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29808.
Texto completoSiontis, Konstantinos C., Xiaoxi Yao, James P. Pirruccello, Anthony A. Philippakis y Peter A. Noseworthy. "How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?" Circulation Research 127, n.º 1 (19 de junio de 2020): 155–69. http://dx.doi.org/10.1161/circresaha.120.316401.
Texto completoLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability". AIP Advances 11, n.º 2 (1 de febrero de 2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Texto completoMondal, B., T. Mukherjee y T. DebRoy. "Crack free metal printing using physics informed machine learning". Acta Materialia 226 (marzo de 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Texto completoHowland, Michael F. y John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning". Energies 12, n.º 14 (16 de julio de 2019): 2716. http://dx.doi.org/10.3390/en12142716.
Texto completoTartakovsky, A. M., D. A. Barajas-Solano y Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions". Journal of Computational Physics 426 (febrero de 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Texto completoHsu, Abigail, Baolian Cheng y Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning". Physics of Plasmas 27, n.º 1 (enero de 2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Texto completoKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley y Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae". Astrophysical Journal 940, n.º 1 (1 de noviembre de 2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Texto completoLang, Xiao, Da Wu y Wengang Mao. "Physics-informed machine learning models for ship speed prediction". Expert Systems with Applications 238 (marzo de 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Texto completoUganya, G., I. Bremnavas, K. V. Prashanth, M. Rajkumar, R. V. S. Lalitha y Charanjeet Singh. "Empowering autonomous indoor navigation with informed machine learning techniques". Computers and Electrical Engineering 111 (octubre de 2023): 108918. http://dx.doi.org/10.1016/j.compeleceng.2023.108918.
Texto completoPiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu y Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning". IEEE Transactions on Artificial Intelligence 5, n.º 3 (marzo de 2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Texto completoKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez y Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de marzo de 2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Texto completoMarian, Max y Stephan Tremmel. "Physics-Informed Machine Learning—An Emerging Trend in Tribology". Lubricants 11, n.º 11 (30 de octubre de 2023): 463. http://dx.doi.org/10.3390/lubricants11110463.
Texto completoLiu, Hao-Xuan, Hai-Le Yan, Ying Zhao, Nan Jia, Shuai Tang, Daoyong Cong, Bo Yang et al. "Machine learning informed tetragonal ratio c/a of martensite". Computational Materials Science 233 (enero de 2024): 112735. http://dx.doi.org/10.1016/j.commatsci.2023.112735.
Texto completovon Bloh, Malte, David Lobell y Senthold Asseng. "Knowledge informed hybrid machine learning in agricultural yield prediction". Computers and Electronics in Agriculture 227 (diciembre de 2024): 109606. http://dx.doi.org/10.1016/j.compag.2024.109606.
Texto completoCheraghlou, Shayan, Praneeth Sadda, George O. Agogo y Michael Girardi. "A machine‐learning modified CART algorithm informs Merkel cell carcinoma prognosis". Australasian Journal of Dermatology 62, n.º 3 (24 de mayo de 2021): 323–30. http://dx.doi.org/10.1111/ajd.13624.
Texto completoGao, Junbo. "Applications of machine learning in quantitative trading". Applied and Computational Engineering 82, n.º 1 (8 de noviembre de 2024): 124–29. http://dx.doi.org/10.54254/2755-2721/82/20240984.
Texto completo