Artículos de revistas sobre el tema "Machine learning, Global Optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Machine learning, Global Optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Cassioli, A., D. Di Lorenzo, M. Locatelli, F. Schoen y M. Sciandrone. "Machine learning for global optimization". Computational Optimization and Applications 51, n.º 1 (5 de mayo de 2010): 279–303. http://dx.doi.org/10.1007/s10589-010-9330-x.
Texto completoKudyshev, Zhaxylyk A., Alexander V. Kildishev, Vladimir M. Shalaev y Alexandra Boltasseva. "Machine learning–assisted global optimization of photonic devices". Nanophotonics 10, n.º 1 (28 de octubre de 2020): 371–83. http://dx.doi.org/10.1515/nanoph-2020-0376.
Texto completoAbdul Salam, Mustafa, Ahmad Taher Azar y Rana Hussien. "Swarm-Based Extreme Learning Machine Models for Global Optimization". Computers, Materials & Continua 70, n.º 3 (2022): 6339–63. http://dx.doi.org/10.32604/cmc.2022.020583.
Texto completoTAKAMATSU, Ryosuke y Wataru YAMAZAKI. "Global topology optimization of supersonic airfoil using machine learning technologies". Proceedings of The Computational Mechanics Conference 2021.34 (2021): 112. http://dx.doi.org/10.1299/jsmecmd.2021.34.112.
Texto completoTsoulos, Ioannis G., Alexandros Tzallas, Evangelos Karvounis y Dimitrios Tsalikakis. "NeuralMinimizer: A Novel Method for Global Optimization". Information 14, n.º 2 (25 de enero de 2023): 66. http://dx.doi.org/10.3390/info14020066.
Texto completoHonda, M. y E. Narita. "Machine-learning assisted steady-state profile predictions using global optimization techniques". Physics of Plasmas 26, n.º 10 (octubre de 2019): 102307. http://dx.doi.org/10.1063/1.5117846.
Texto completoWu, Shaohua, Yong Hu, Wei Wang, Xinyong Feng y Wanneng Shu. "Application of Global Optimization Methods for Feature Selection and Machine Learning". Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/241517.
Texto completoMa, Sicong, Cheng Shang, Chuan-Ming Wang y Zhi-Pan Liu. "Thermodynamic rules for zeolite formation from machine learning based global optimization". Chemical Science 11, n.º 37 (2020): 10113–18. http://dx.doi.org/10.1039/d0sc03918g.
Texto completoHuang, Si-Da, Cheng Shang, Pei-Lin Kang y Zhi-Pan Liu. "Atomic structure of boron resolved using machine learning and global sampling". Chemical Science 9, n.º 46 (2018): 8644–55. http://dx.doi.org/10.1039/c8sc03427c.
Texto completoBarkalov, Konstantin, Ilya Lebedev y Evgeny Kozinov. "Acceleration of Global Optimization Algorithm by Detecting Local Extrema Based on Machine Learning". Entropy 23, n.º 10 (28 de septiembre de 2021): 1272. http://dx.doi.org/10.3390/e23101272.
Texto completoWang, Wei-Ching. "Sound localization via deep learning, generative modeling, and global optimization". Journal of the Acoustical Society of America 151, n.º 4 (abril de 2022): A255. http://dx.doi.org/10.1121/10.0011240.
Texto completoZhang, Ao, Yan Liu, Jinguang Yang, Zhi Li, Chuang Zhang y Yiwen Li. "Machine learning based design optimization of centrifugal impellers". Journal of the Global Power and Propulsion Society 6 (25 de julio de 2022): 124–34. http://dx.doi.org/10.33737/jgpps/150663.
Texto completoHa, Seung-Yeal, Shi Jin y Doheon Kim. "Convergence of a first-order consensus-based global optimization algorithm". Mathematical Models and Methods in Applied Sciences 30, n.º 12 (19 de septiembre de 2020): 2417–44. http://dx.doi.org/10.1142/s0218202520500463.
Texto completoSpillard, Samuel, Christopher J. Turner y Konstantinos Meichanetzidis. "Machine learning entanglement freedom". International Journal of Quantum Information 16, n.º 08 (diciembre de 2018): 1840002. http://dx.doi.org/10.1142/s0219749918400026.
Texto completoCandelieri, Antonio y Francesco Archetti. "Global optimization in machine learning: the design of a predictive analytics application". Soft Computing 23, n.º 9 (1 de noviembre de 2018): 2969–77. http://dx.doi.org/10.1007/s00500-018-3597-8.
Texto completoLi, Shijin y Fucai Wang. "Research on Optimization of Improved Gray Wolf Optimization-Extreme Learning Machine Algorithm in Vehicle Route Planning". Discrete Dynamics in Nature and Society 2020 (6 de octubre de 2020): 1–7. http://dx.doi.org/10.1155/2020/8647820.
Texto completoKramer, Oliver. "On Machine Symbol Grounding and Optimization". International Journal of Cognitive Informatics and Natural Intelligence 5, n.º 3 (julio de 2011): 73–85. http://dx.doi.org/10.4018/ijcini.2011070105.
Texto completoKubwimana, Benjamin y Hamidreza Najafi. "A Novel Approach for Optimizing Building Energy Models Using Machine Learning Algorithms". Energies 16, n.º 3 (17 de enero de 2023): 1033. http://dx.doi.org/10.3390/en16031033.
Texto completoLi, Yibo, Chao Liu, Senyue Zhang, Wenan Tan y Yanyan Ding. "Reproducing Polynomial Kernel Extreme Learning Machine". Journal of Advanced Computational Intelligence and Intelligent Informatics 21, n.º 5 (20 de septiembre de 2017): 795–802. http://dx.doi.org/10.20965/jaciii.2017.p0795.
Texto completoBarkalov, Konstantin, Ilya Lebedev, Marina Usova, Daria Romanova, Daniil Ryazanov y Sergei Strijhak. "Optimization of Turbulence Model Parameters Using the Global Search Method Combined with Machine Learning". Mathematics 10, n.º 15 (31 de julio de 2022): 2708. http://dx.doi.org/10.3390/math10152708.
Texto completoÖzöğür Akyüz, Süreyya, Gürkan Üstünkar y Gerhard Wilhelm Weber. "Adapted Infinite Kernel Learning by Multi-Local Algorithm". International Journal of Pattern Recognition and Artificial Intelligence 30, n.º 04 (12 de abril de 2016): 1651004. http://dx.doi.org/10.1142/s0218001416510046.
Texto completoSmithies, Rob, Said Salhi y Nat Queen. "Adaptive Hybrid Learning for Neural Networks". Neural Computation 16, n.º 1 (1 de enero de 2004): 139–57. http://dx.doi.org/10.1162/08997660460734038.
Texto completoYi, Dokkyun, Sangmin Ji y Sunyoung Bu. "An Enhanced Optimization Scheme Based on Gradient Descent Methods for Machine Learning". Symmetry 11, n.º 7 (20 de julio de 2019): 942. http://dx.doi.org/10.3390/sym11070942.
Texto completoSong, Tao, Jiarong Wang, Danya Xu, Wei Wei, Runsheng Han, Fan Meng, Ying Li y Pengfei Xie. "Unsupervised Machine Learning for Improved Delaunay Triangulation". Journal of Marine Science and Engineering 9, n.º 12 (7 de diciembre de 2021): 1398. http://dx.doi.org/10.3390/jmse9121398.
Texto completoLi, Yang, Zhichuan Zhu, Alin Hou, Qingdong Zhao, Liwei Liu y Lijuan Zhang. "Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO". Computational and Mathematical Methods in Medicine 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1461470.
Texto completoKawaguchi, Kenji, Jiaoyang Huang y Leslie Pack Kaelbling. "Every Local Minimum Value Is the Global Minimum Value of Induced Model in Nonconvex Machine Learning". Neural Computation 31, n.º 12 (diciembre de 2019): 2293–323. http://dx.doi.org/10.1162/neco_a_01234.
Texto completoKhan, Waqar Ahmed, S. H. Chung, Muhammad Usman Awan y Xin Wen. "Machine learning facilitated business intelligence (Part II)". Industrial Management & Data Systems 120, n.º 1 (27 de noviembre de 2019): 128–63. http://dx.doi.org/10.1108/imds-06-2019-0351.
Texto completoGuo, Xiaohua. "Optimization of English Machine Translation by Deep Neural Network under Artificial Intelligence". Computational Intelligence and Neuroscience 2022 (21 de abril de 2022): 1–10. http://dx.doi.org/10.1155/2022/2003411.
Texto completoFan, Yanyan, Yu Zhang, Baosu Guo, Xiaoyuan Luo, Qingjin Peng y Zhenlin Jin. "A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning". Mathematics 10, n.º 16 (22 de agosto de 2022): 3019. http://dx.doi.org/10.3390/math10163019.
Texto completoPapakonstantinou, Charalampos, Ioannis Daramouskas, Vaios Lappas, Vassilis C. Moulianitis y Vassilis Kostopoulos. "A Machine Learning Approach for Global Steering Control Moment Gyroscope Clusters". Aerospace 9, n.º 3 (17 de marzo de 2022): 164. http://dx.doi.org/10.3390/aerospace9030164.
Texto completoBelmahdi, Brahim, Mohamed Louzazni y Abdelmajid El Bouardi. "Comparative optimization of global solar radiation forecasting using machine learning and time series models". Environmental Science and Pollution Research 29, n.º 10 (8 de octubre de 2021): 14871–88. http://dx.doi.org/10.1007/s11356-021-16760-8.
Texto completoMeldgaard, Søren A., Esben L. Kolsbjerg y Bjørk Hammer. "Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies". Journal of Chemical Physics 149, n.º 13 (7 de octubre de 2018): 134104. http://dx.doi.org/10.1063/1.5048290.
Texto completoZhou, Shuchen, Waqas Jadoon y Junaid Shuja. "Machine Learning-Based Offloading Strategy for Lightweight User Mobile Edge Computing Tasks". Complexity 2021 (8 de junio de 2021): 1–11. http://dx.doi.org/10.1155/2021/6455617.
Texto completoSun, Qian, William Ampomah, Junyu You, Martha Cather y Robert Balch. "Practical CO2—WAG Field Operational Designs Using Hybrid Numerical-Machine-Learning Approaches". Energies 14, n.º 4 (17 de febrero de 2021): 1055. http://dx.doi.org/10.3390/en14041055.
Texto completoZong Chen, Dr Joy Iong y Kong-Long Lai. "Machine Learning based Energy Management at Internet of Things Network Nodes". Journal of Trends in Computer Science and Smart Technology 2, n.º 3 (17 de julio de 2020): 127–33. http://dx.doi.org/10.36548/jtcsst.2020.3.001.
Texto completoRoncaglia, Cesare, Daniele Rapetti y Riccardo Ferrando. "Regression and clustering algorithms for AgCu nanoalloys: from mixing energy predictions to structure recognition". Physical Chemistry Chemical Physics 23, n.º 40 (2021): 23325–35. http://dx.doi.org/10.1039/d1cp02143e.
Texto completoLi, Xiguang, Shoufei Han, Liang Zhao, Changqing Gong y Xiaojing Liu. "New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems". Computational Intelligence and Neuroscience 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/4523754.
Texto completoGao, H., L. Jézéque, E. Cabrol y B. Vitry. "Robust Design of Suspension System with Polynomial Chaos Expansion and Machine Learning". Science & Technique 19, n.º 1 (5 de febrero de 2020): 43–54. http://dx.doi.org/10.21122/2227-1031-2020-19-1-43-54.
Texto completoMa, Yun Jie, Zi Hui Ren y Ping Zhu. "A Layer Hybrid Intelligent Algorithm for Solving Resources Scheduling Problem". Applied Mechanics and Materials 644-650 (septiembre de 2014): 1506–9. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.1506.
Texto completoFeigl, Moritz, Katharina Lebiedzinski, Mathew Herrnegger y Karsten Schulz. "Machine-learning methods for stream water temperature prediction". Hydrology and Earth System Sciences 25, n.º 5 (31 de mayo de 2021): 2951–77. http://dx.doi.org/10.5194/hess-25-2951-2021.
Texto completoKawaguchi, Kenji, Yu Maruyama y Xiaoyu Zheng. "Global Continuous Optimization with Error Bound and Fast Convergence". Journal of Artificial Intelligence Research 56 (15 de junio de 2016): 153–95. http://dx.doi.org/10.1613/jair.4742.
Texto completoHan, Shoufei, Kun Zhu y Ran Wang. "Improvement of evolution process of dandelion algorithm with extreme learning machine for global optimization problems". Expert Systems with Applications 163 (enero de 2021): 113803. http://dx.doi.org/10.1016/j.eswa.2020.113803.
Texto completoYu, Xi, Li Li, Xin He, Shengbo Chen y Lei Jiang. "Federated Learning Optimization Algorithm for Automatic Weight Optimal". Computational Intelligence and Neuroscience 2022 (9 de noviembre de 2022): 1–19. http://dx.doi.org/10.1155/2022/8342638.
Texto completoAlqahtani, Abdulwahab, Xupeng He, Bicheng Yan y Hussein Hoteit. "Uncertainty Analysis of CO2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization". Energies 16, n.º 4 (8 de febrero de 2023): 1684. http://dx.doi.org/10.3390/en16041684.
Texto completoRen, Bin y Huanfei Ma. "Global optimization of hyper-parameters in reservoir computing". Electronic Research Archive 30, n.º 7 (2022): 2719–29. http://dx.doi.org/10.3934/era.2022139.
Texto completoLi, Shuang y Qiuwei Li. "Local and Global Convergence of General Burer-Monteiro Tensor Optimizations". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 9 (28 de junio de 2022): 10266–74. http://dx.doi.org/10.1609/aaai.v36i9.21267.
Texto completoAl-Mashhadani, Firas, Ibrahim Al-Jadir y Qusay Alsaffar. "An enhanced krill herd optimization technique used for classification problem". Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 30, n.º 2 (5 de julio de 2021): 354–64. http://dx.doi.org/10.22630/pniks.2021.30.2.30.
Texto completoLiang, Chunyu, Xin Xu, Heping Chen, Wensheng Wang, Kunkun Zheng, Guojin Tan, Zhengwei Gu y Hao Zhang. "Machine Learning Approach to Develop a Novel Multi-Objective Optimization Method for Pavement Material Proportion". Applied Sciences 11, n.º 2 (17 de enero de 2021): 835. http://dx.doi.org/10.3390/app11020835.
Texto completoArrinda, Mikel, Gorka Vertiz, Denis Sanchéz, Aitor Makibar y Haritz Macicior. "Surrogate Model of the Optimum Global Battery Pack Thermal Management System Control". Energies 15, n.º 5 (24 de febrero de 2022): 1695. http://dx.doi.org/10.3390/en15051695.
Texto completoFeng, Yi, Mengru Liu, Yuqian Zhang y Jinglin Wang. "A Dynamic Opposite Learning Assisted Grasshopper Optimization Algorithm for the Flexible JobScheduling Problem". Complexity 2020 (30 de diciembre de 2020): 1–19. http://dx.doi.org/10.1155/2020/8870783.
Texto completo