Literatura académica sobre el tema "Machine Learning, Deep Learning, Quantum Computing, Network Theory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Machine Learning, Deep Learning, Quantum Computing, Network Theory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Machine Learning, Deep Learning, Quantum Computing, Network Theory"
Wiebe, Nathan, Ashish Kapoor y Krysta M. Svore. "Quantum deep learning". Quantum Information and Computation 16, n.º 7&8 (mayo de 2016): 541–87. http://dx.doi.org/10.26421/qic16.7-8-1.
Texto completoCrawford, Daniel, Anna Levit, Navid Ghadermarzy, Jaspreet S. Oberoi y Pooya Ronagh. "Reinforcement learning using quantum Boltzmann machines". Quantum Information and Computation 18, n.º 1&2 (febrero de 2018): 51–74. http://dx.doi.org/10.26421/qic18.1-2-3.
Texto completoMercaldo, Francesco, Giovanni Ciaramella, Giacomo Iadarola, Marco Storto, Fabio Martinelli y Antonella Santone. "Towards Explainable Quantum Machine Learning for Mobile Malware Detection and Classification". Applied Sciences 12, n.º 23 (24 de noviembre de 2022): 12025. http://dx.doi.org/10.3390/app122312025.
Texto completoVijayasekaran, G. y M. Duraipandian. "Resource scheduling in edge computing IoT networks using hybrid deep learning algorithm". System research and information technologies, n.º 3 (30 de octubre de 2022): 86–101. http://dx.doi.org/10.20535/srit.2308-8893.2022.3.06.
Texto completoGianani, Ilaria y Claudia Benedetti. "Multiparameter estimation of continuous-time quantum walk Hamiltonians through machine learning". AVS Quantum Science 5, n.º 1 (marzo de 2023): 014405. http://dx.doi.org/10.1116/5.0137398.
Texto completoDing, Li, Haowen Wang, Yinuo Wang y Shumei Wang. "Based on Quantum Topological Stabilizer Color Code Morphism Neural Network Decoder". Quantum Engineering 2022 (20 de julio de 2022): 1–8. http://dx.doi.org/10.1155/2022/9638108.
Texto completoGhavasieh, A. y M. De Domenico. "Statistical physics of network structure and information dynamics". Journal of Physics: Complexity 3, n.º 1 (26 de enero de 2022): 011001. http://dx.doi.org/10.1088/2632-072x/ac457a.
Texto completoOkey, Ogobuchi Daniel, Siti Sarah Maidin, Renata Lopes Rosa, Waqas Tariq Toor, Dick Carrillo Melgarejo, Lunchakorn Wuttisittikulkij, Muhammad Saadi y Demóstenes Zegarra Rodríguez. "Quantum Key Distribution Protocol Selector Based on Machine Learning for Next-Generation Networks". Sustainability 14, n.º 23 (29 de noviembre de 2022): 15901. http://dx.doi.org/10.3390/su142315901.
Texto completoOkuboyejo, Damilola A. y Oludayo O. Olugbara. "Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning". Algorithms 15, n.º 12 (24 de noviembre de 2022): 443. http://dx.doi.org/10.3390/a15120443.
Texto completoLi, Jian y Yongyan Zhao. "Construction of Innovation and Entrepreneurship Platform Based on Deep Learning Algorithm". Scientific Programming 2021 (9 de diciembre de 2021): 1–7. http://dx.doi.org/10.1155/2021/1833979.
Texto completoTesis sobre el tema "Machine Learning, Deep Learning, Quantum Computing, Network Theory"
Malmgren, Henrik. "Revision of an artificial neural network enabling industrial sorting". Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-392690.
Texto completoBuffoni, Lorenzo. "Machine learning applications in science". Doctoral thesis, 2021. http://hdl.handle.net/2158/1227616.
Texto completoScellier, Benjamin. "A deep learning theory for neural networks grounded in physics". Thesis, 2020. http://hdl.handle.net/1866/25593.
Texto completoIn the last decade, deep learning has become a major component of artificial intelligence, leading to a series of breakthroughs across a wide variety of domains. The workhorse of deep learning is the optimization of loss functions by stochastic gradient descent (SGD). Traditionally in deep learning, neural networks are differentiable mathematical functions, and the loss gradients required for SGD are computed with the backpropagation algorithm. However, the computer architectures on which these neural networks are implemented and trained suffer from speed and energy inefficiency issues, due to the separation of memory and processing in these architectures. To solve these problems, the field of neuromorphic computing aims at implementing neural networks on hardware architectures that merge memory and processing, just like brains do. In this thesis, we argue that building large, fast and efficient neural networks on neuromorphic architectures also requires rethinking the algorithms to implement and train them. We present an alternative mathematical framework, also compatible with SGD, which offers the possibility to design neural networks in substrates that directly exploit the laws of physics. Our framework applies to a very broad class of models, namely those whose state or dynamics are described by variational equations. This includes physical systems whose equilibrium state minimizes an energy function, and physical systems whose trajectory minimizes an action functional (principle of least action). We present a simple procedure to compute the loss gradients in such systems, called equilibrium propagation (EqProp), which requires solely locally available information for each trainable parameter. Since many models in physics and engineering can be described by variational principles, our framework has the potential to be applied to a broad variety of physical systems, whose applications extend to various fields of engineering, beyond neuromorphic computing.
Capítulos de libros sobre el tema "Machine Learning, Deep Learning, Quantum Computing, Network Theory"
S., Karthigai Selvi. "Structural and Functional Data Processing in Bio-Computing and Deep Learning". En Structural and Functional Aspects of Biocomputing Systems for Data Processing, 198–215. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6523-3.ch010.
Texto completoActas de conferencias sobre el tema "Machine Learning, Deep Learning, Quantum Computing, Network Theory"
Buiu, Catalin y Vladrares Danaila. "DATA SCIENCE AND MACHINE LEARNING TECHNIQUES FOR CASE-BASED LEARNING IN MEDICAL BIOENGINEERING EDUCATION". En eLSE 2020. University Publishing House, 2020. http://dx.doi.org/10.12753/2066-026x-20-194.
Texto completo