Artículos de revistas sobre el tema "LSPR sensors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "LSPR sensors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Alharbi, Raed, Mehrdad Irannejad y Mustafa Yavuz. "A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance". Sensors 19, n.º 4 (19 de febrero de 2019): 862. http://dx.doi.org/10.3390/s19040862.
Texto completoLu, Mengdi, Wei Peng, Ming Lin, Fang Wang y Yang Zhang. "Gold Nanoparticle-Enhanced Detection of DNA Hybridization by a Block Copolymer-Templating Fiber-Optic Localized Surface Plasmon Resonance Biosensor". Nanomaterials 11, n.º 3 (1 de marzo de 2021): 616. http://dx.doi.org/10.3390/nano11030616.
Texto completoAlharbi, Raed y Mustafa Yavuz. "Promote Localized Surface Plasmonic Sensor Performance via Spin-Coating Graphene Flakes over Au Nano-Disk Array". Photonics 6, n.º 2 (25 de mayo de 2019): 57. http://dx.doi.org/10.3390/photonics6020057.
Texto completoLee, Seunghun, Hyerin Song, Heesang Ahn, Seungchul Kim, Jong-ryul Choi y Kyujung Kim. "Fiber-Optic Localized Surface Plasmon Resonance Sensors Based on Nanomaterials". Sensors 21, n.º 3 (26 de enero de 2021): 819. http://dx.doi.org/10.3390/s21030819.
Texto completoS. S. dos Santos, Paulo, José M. M. M. de Almeida, Isabel Pastoriza-Santos y Luís C. C. Coelho. "Advances in Plasmonic Sensing at the NIR—A Review". Sensors 21, n.º 6 (17 de marzo de 2021): 2111. http://dx.doi.org/10.3390/s21062111.
Texto completoDuan, Qilin, Yineng Liu, Shanshan Chang, Huanyang Chen y Jin-hui Chen. "Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications". Sensors 21, n.º 16 (4 de agosto de 2021): 5262. http://dx.doi.org/10.3390/s21165262.
Texto completoYin, Fengyu, Jin Liu, Haima Yang, Aleksey Kudreyko y Bo Huang. "Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface". Symmetry 12, n.º 5 (20 de mayo de 2020): 841. http://dx.doi.org/10.3390/sym12050841.
Texto completoProença, Manuela, Marco S. Rodrigues, Diana I. Meira, M. Cidalia R. Castro, Pedro V. Rodrigues, Ana V. Machado, Eduardo Alves, Nuno P. Barradas, Joel Borges y Filipe Vaz. "Optimization of Au:CuO Thin Films by Plasma Surface Modification for High-Resolution LSPR Gas Sensing at Room Temperature". Sensors 22, n.º 18 (17 de septiembre de 2022): 7043. http://dx.doi.org/10.3390/s22187043.
Texto completoLi, Guoru, Ragini Singh, Jiajun Guo, Bingyuan Zhang y Santosh Kumar. "Nb2CTx MXene-assisted double S-tapered fiber-based LSPR sensor with improved features for tyramine detection". Applied Physics Letters 122, n.º 8 (20 de febrero de 2023): 083701. http://dx.doi.org/10.1063/5.0143776.
Texto completoQian, Siyu, Xinlong Chen, Shiyu Jiang, Qiwen Pan, Yachen Gao, Lei Wang, Wei Peng, Shanjun Liang, Jie Zhu y Shengchun Liu. "Direct detection of charge and discharge process in supercapacitor by fiber-optic LSPR sensors". Nanophotonics 9, n.º 5 (22 de febrero de 2020): 1071–79. http://dx.doi.org/10.1515/nanoph-2019-0504.
Texto completoRan, Lingling, Yifei Tao, Kai Guo, Fei Shen, Hongping Zhou, Yongxuan Sun, Renbin Zhang et al. "Bias-scanning based tunable LSPR sensor". Physical Chemistry Chemical Physics 20, n.º 4 (2018): 2146–50. http://dx.doi.org/10.1039/c7cp07565k.
Texto completoLiu, Yun, Ning Zhang, Ping Li, Li Yu, Shimeng Chen, Yang Zhang, Zhenguo Jing y Wei Peng. "Low-Cost Localized Surface Plasmon Resonance Biosensing Platform with a Response Enhancement for Protein Detection". Nanomaterials 9, n.º 7 (16 de julio de 2019): 1019. http://dx.doi.org/10.3390/nano9071019.
Texto completoRodrigues, Marco S., Joel Borges, Cláudia Lopes, Rui M. S. Pereira, Mikhail I. Vasilevskiy y Filipe Vaz. "Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies". Applied Sciences 11, n.º 12 (10 de junio de 2021): 5388. http://dx.doi.org/10.3390/app11125388.
Texto completoLi, Jin, Haoru Wang, Zhi Li, Zhengcheng Su y Yue Zhu. "Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors". Sensors 20, n.º 18 (10 de septiembre de 2020): 5155. http://dx.doi.org/10.3390/s20185155.
Texto completoWang, Huafeng, Ting Fang, Hua Liu, Tianxiang Wei y Zhihui Dai. "Gold Nanostar-Based Sensitive Catechol Plasmonic Colorimetric Sensing Platform with Ultra-Wide Detection Range". Chemosensors 10, n.º 11 (25 de octubre de 2022): 439. http://dx.doi.org/10.3390/chemosensors10110439.
Texto completoQomaruddin, Olga Casals, Hutomo Suryo Wasisto, Andreas Waag, Joan Daniel Prades y Cristian Fàbrega. "Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)". Chemosensors 10, n.º 1 (11 de enero de 2022): 28. http://dx.doi.org/10.3390/chemosensors10010028.
Texto completoBadi'ah, Hanim Istatik, Dinda Khoirul Ummah, Ni Nyoman Tri Puspaningsih y Ganden Supriyanto. "Strategies in Improving Sensitivity of Colorimetry Sensor Based on Silver Nanoparticles in Chemical and Biological Samples". Indonesian Journal of Chemistry 22, n.º 6 (27 de julio de 2022): 1705. http://dx.doi.org/10.22146/ijc.73194.
Texto completoWu, Fan, Lin Cheng y Wenhui Wang. "Surface Plasmon Resonance of Large-Size Ag Nanobars". Micromachines 13, n.º 4 (18 de abril de 2022): 638. http://dx.doi.org/10.3390/mi13040638.
Texto completoSantos, Paulo, José Almeida y Luis Coelho. "Study of LSPR Spectral Analysis Techniques on SPR Optical Fiber Sensors". U.Porto Journal of Engineering 8, n.º 3 (30 de mayo de 2022): 12–17. http://dx.doi.org/10.24840/2183-6493_008.003_0004.
Texto completoJiang, Jing, Xinhao Wang, Shuang Li, Fei Ding, Nantao Li, Shaoyu Meng, Ruifan Li, Jia Qi, Qingjun Liu y Gang Logan Liu. "Plasmonic nano-arrays for ultrasensitive bio-sensing". Nanophotonics 7, n.º 9 (28 de agosto de 2018): 1517–31. http://dx.doi.org/10.1515/nanoph-2018-0023.
Texto completoKim, Dong Min, Jong Seong Park, Seung-Woon Jung, Jinho Yeom y Seung Min Yoo. "Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors". Sensors 21, n.º 9 (4 de mayo de 2021): 3191. http://dx.doi.org/10.3390/s21093191.
Texto completoBousiakou, Leda G., Hrvoje Gebavi, Lara Mikac, Stefanos Karapetis y Mile Ivanda. "Surface Enhanced Raman Spectroscopy for Molecular Identification- a Review on Surface Plasmon Resonance (SPR) and Localised Surface Plasmon Resonance (LSPR) in Optical Nanobiosensing". Croatica chemica acta 92, n.º 4 (2019): 479–94. http://dx.doi.org/10.5562/cca3558.
Texto completoRao, Honghong, Xin Xue, Hongqiang Wang y Zhonghua Xue. "Gold nanorod etching-based multicolorimetric sensors: strategies and applications". Journal of Materials Chemistry C 7, n.º 16 (2019): 4610–21. http://dx.doi.org/10.1039/c9tc00757a.
Texto completoLiu, Ju y Zhiyuan Li. "Control of Surface Plasmon Resonance in Silver Nanocubes by CEP-Locked Laser Pulse". Photonics 9, n.º 2 (19 de enero de 2022): 53. http://dx.doi.org/10.3390/photonics9020053.
Texto completoNan, Minghui, Bobby Aditya Darmawan, Gwangjun Go, Shirong Zheng, Junhyeok Lee, Seokjae Kim, Taeksu Lee, Eunpyo Choi, Jong-Oh Park y Doyeon Bang. "Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat". Biosensors 13, n.º 2 (24 de enero de 2023): 184. http://dx.doi.org/10.3390/bios13020184.
Texto completoManzo, Maurizio, Omar Cavazos, Zhenhua Huang y Liping Cai. "Plasmonic and Hybrid Whispering Gallery Mode–Based Biosensors: Literature Review". JMIR Biomedical Engineering 6, n.º 2 (12 de abril de 2021): e17781. http://dx.doi.org/10.2196/17781.
Texto completoTu, M. H., T. Sun y K. T. V. Grattan. "LSPR optical fibre sensors based on hollow gold nanostructures". Sensors and Actuators B: Chemical 191 (febrero de 2014): 37–44. http://dx.doi.org/10.1016/j.snb.2013.09.094.
Texto completoKaminska, I., T. Maurer, R. Nicolas, M. Renault, T. Lerond, R. Salas-Montiel, Z. Herro et al. "Near-Field and Far-Field Sensitivities of LSPR Sensors". Journal of Physical Chemistry C 119, n.º 17 (22 de abril de 2015): 9470–76. http://dx.doi.org/10.1021/acs.jpcc.5b00566.
Texto completoYang, Wen, Jing Yu, Xiangtai Xi, Yang Sun, Yiming Shen, Weiwei Yue, Chao Zhang y Shouzhen Jiang. "Preparation of Graphene/ITO Nanorod Metamaterial/U-Bent-Annealing Fiber Sensor and DNA Biomolecule Detection". Nanomaterials 9, n.º 8 (12 de agosto de 2019): 1154. http://dx.doi.org/10.3390/nano9081154.
Texto completoFigueiredo, Nuno M., Ricardo Serra y Albano Cavaleiro. "Robust LSPR Sensing Using Thermally Embedded Au Nanoparticles in Glass Substrates". Nanomaterials 11, n.º 6 (17 de junio de 2021): 1592. http://dx.doi.org/10.3390/nano11061592.
Texto completoBansal, Amit y S. S. Verma. "Searching for Alternative Plasmonic Materials for Specific Applications". Indian Journal of Materials Science 2014 (12 de mayo de 2014): 1–10. http://dx.doi.org/10.1155/2014/897125.
Texto completoOh, Seungju, Hyeyeon Hur, Yoonjae Kim, Seongcheol Shin, Hyunjeong Woo, Jonghoon Choi y Hyun Ho Lee. "Peptide Specific Nanoplastic Detection Based on Sandwich Typed Localized Surface Plasmon Resonance". Nanomaterials 11, n.º 11 (28 de octubre de 2021): 2887. http://dx.doi.org/10.3390/nano11112887.
Texto completoQi, Miao, Nancy Meng Ying Zhang, Kaiwei Li, Swee Chuan Tjin y Lei Wei. "Hybrid Plasmonic Fiber-Optic Sensors". Sensors 20, n.º 11 (8 de junio de 2020): 3266. http://dx.doi.org/10.3390/s20113266.
Texto completoUchida, Shuhei, Kazuya Yamamura y Nobuyuki Zettsu. "Fabrication of Precise Asymmetric Nanoshells Array with Nanogaps for a Label-Free Immunoassay Based on NIR-Light Responsive LSPR". Key Engineering Materials 523-524 (noviembre de 2012): 680–85. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.680.
Texto completoGowri, A. y V. V. R. Sai. "Development of LSPR based U-bent plastic optical fiber sensors". Sensors and Actuators B: Chemical 230 (julio de 2016): 536–43. http://dx.doi.org/10.1016/j.snb.2016.02.074.
Texto completoWang, Jun, Gang Wang, Changlong Liu, Yimo Wang y Hui Qian. "Metal ion implantation into transparent dielectric slab: an effective route to high-stability localized surface plasmon resonance sensors". Nanotechnology 33, n.º 3 (29 de octubre de 2021): 035711. http://dx.doi.org/10.1088/1361-6528/ac2f23.
Texto completoBhalla, Nikhil, Aditya Jain, Yoonjoo Lee, Amy Q. Shen y Doojin Lee. "Dewetting Metal Nanofilms—Effect of Substrate on Refractive Index Sensitivity of Nanoplasmonic Gold". Nanomaterials 9, n.º 11 (27 de octubre de 2019): 1530. http://dx.doi.org/10.3390/nano9111530.
Texto completoZheng, Yuqiao, Sumin Bian, Jiacheng Sun, Liaoyong Wen, Guoguang Rong y Mohamad Sawan. "Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection". Biosensors 12, n.º 3 (28 de febrero de 2022): 151. http://dx.doi.org/10.3390/bios12030151.
Texto completoGoicoechea, Rivero, Sada y Arregui. "Self-Referenced Optical Fiber Sensor for Hydrogen Peroxide Detection based on LSPR of Metallic Nanoparticles in Layer-by-Layer Films". Sensors 19, n.º 18 (7 de septiembre de 2019): 3872. http://dx.doi.org/10.3390/s19183872.
Texto completoRodrigues, Marco S., Joel Borges y Filipe Vaz. "Enhancing the Sensitivity of Nanoplasmonic Thin Films for Ethanol Vapor Detection". Materials 13, n.º 4 (14 de febrero de 2020): 870. http://dx.doi.org/10.3390/ma13040870.
Texto completoChauhan, Maya y Vinod Kumar Singh. "Review on recent experimental SPR/LSPR based fiber optic analyte sensors". Optical Fiber Technology 64 (julio de 2021): 102580. http://dx.doi.org/10.1016/j.yofte.2021.102580.
Texto completoFantoni, Alessandro, Vladan Stojkovic, Ana Carvalho, Ana P. C. Ribeiro y Elisabete C. B. A. Alegria. "Characterization of AuNPs+rGO as a functionalized layer for LSPR sensors". Materials Letters: X 5 (marzo de 2020): 100032. http://dx.doi.org/10.1016/j.mlblux.2019.100032.
Texto completoSusu, Laurentiu, Andreea Campu, Ana Craciun, Adriana Vulpoi, Simion Astilean y Monica Focsan. "Designing Efficient Low-Cost Paper-Based Sensing Plasmonic Nanoplatforms". Sensors 18, n.º 9 (11 de septiembre de 2018): 3035. http://dx.doi.org/10.3390/s18093035.
Texto completoMorsin, Marlia, Muhamad Mat Salleh, Akrajas Ali Umar y Muhammad Yahaya. "Localized Surface Plasmon Resonance Sensor of Gold Nanoplates for Detection of Boric Acid". Key Engineering Materials 605 (abril de 2014): 356–59. http://dx.doi.org/10.4028/www.scientific.net/kem.605.356.
Texto completoRodrigues, Marco S., Joel Borges y Filipe Vaz. "Plasmonic Strain Sensors Based on Au-TiO2 Thin Films on Flexible Substrates". Sensors 22, n.º 4 (11 de febrero de 2022): 1375. http://dx.doi.org/10.3390/s22041375.
Texto completoJia, Shuo, Aiwen Ma, Hanpeng Dong y Shanhong Xia. "Quantifiable Effect of Interparticle Plasmonic Coupling on Sensitivity and Tuning Range for Wavelength-Mode LSPR Fiber Sensor Fabricated by Simple Immobilization Method". Sensors 22, n.º 23 (23 de noviembre de 2022): 9075. http://dx.doi.org/10.3390/s22239075.
Texto completoRoldán, M. V., N. S. Pellegri y O. A. de Sanctis. "Optical Response of Silver Nanoparticles Stabilized by Amines to LSPR based Sensors". Procedia Materials Science 1 (2012): 594–600. http://dx.doi.org/10.1016/j.mspro.2012.06.080.
Texto completoLiu, Jianpeng, Yaqi Ma, Jinhai Shao, Sichao Zhang y Yifang Chen. "Ultra-tall sub-wavelength gold nano pillars for high sensitive LSPR sensors". Microelectronic Engineering 196 (septiembre de 2018): 7–12. http://dx.doi.org/10.1016/j.mee.2018.04.007.
Texto completoTran, Nhu Hoa Thi, Phuong Que Do Tran, Bach Thang Phan, Hanh Kieu Thi Ta, Ngoc Xuan Dat Mai, Lai Thi Hoa, Thanh Van Thi Tran y Dung Van Hoang. "Gold nanoparticles enhanced fluorescence for highly sensitive biosensors based on localized surface plasmon resonance applied in determination C-reactive protein". Science and Technology Development Journal 24, n.º 1 (17 de marzo de 2021): 1862–69. http://dx.doi.org/10.32508/stdj.v24i1.2489.
Texto completoMeira, Diana I., Manuela Proença, Rita Rebelo, Ana I. Barbosa, Marco S. Rodrigues, Joel Borges, Filipe Vaz, Rui L. Reis y Vitor M. Correlo. "Chitosan Micro-Membranes with Integrated Gold Nanoparticles as an LSPR-Based Sensing Platform". Biosensors 12, n.º 11 (1 de noviembre de 2022): 951. http://dx.doi.org/10.3390/bios12110951.
Texto completo