Literatura académica sobre el tema "LSPR sensors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "LSPR sensors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "LSPR sensors"
Alharbi, Raed, Mehrdad Irannejad y Mustafa Yavuz. "A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance". Sensors 19, n.º 4 (19 de febrero de 2019): 862. http://dx.doi.org/10.3390/s19040862.
Texto completoLu, Mengdi, Wei Peng, Ming Lin, Fang Wang y Yang Zhang. "Gold Nanoparticle-Enhanced Detection of DNA Hybridization by a Block Copolymer-Templating Fiber-Optic Localized Surface Plasmon Resonance Biosensor". Nanomaterials 11, n.º 3 (1 de marzo de 2021): 616. http://dx.doi.org/10.3390/nano11030616.
Texto completoAlharbi, Raed y Mustafa Yavuz. "Promote Localized Surface Plasmonic Sensor Performance via Spin-Coating Graphene Flakes over Au Nano-Disk Array". Photonics 6, n.º 2 (25 de mayo de 2019): 57. http://dx.doi.org/10.3390/photonics6020057.
Texto completoLee, Seunghun, Hyerin Song, Heesang Ahn, Seungchul Kim, Jong-ryul Choi y Kyujung Kim. "Fiber-Optic Localized Surface Plasmon Resonance Sensors Based on Nanomaterials". Sensors 21, n.º 3 (26 de enero de 2021): 819. http://dx.doi.org/10.3390/s21030819.
Texto completoS. S. dos Santos, Paulo, José M. M. M. de Almeida, Isabel Pastoriza-Santos y Luís C. C. Coelho. "Advances in Plasmonic Sensing at the NIR—A Review". Sensors 21, n.º 6 (17 de marzo de 2021): 2111. http://dx.doi.org/10.3390/s21062111.
Texto completoDuan, Qilin, Yineng Liu, Shanshan Chang, Huanyang Chen y Jin-hui Chen. "Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications". Sensors 21, n.º 16 (4 de agosto de 2021): 5262. http://dx.doi.org/10.3390/s21165262.
Texto completoYin, Fengyu, Jin Liu, Haima Yang, Aleksey Kudreyko y Bo Huang. "Design and Optimization of Plasmon Resonance Sensor Based on Micro–Nano Symmetrical Localized Surface". Symmetry 12, n.º 5 (20 de mayo de 2020): 841. http://dx.doi.org/10.3390/sym12050841.
Texto completoProença, Manuela, Marco S. Rodrigues, Diana I. Meira, M. Cidalia R. Castro, Pedro V. Rodrigues, Ana V. Machado, Eduardo Alves, Nuno P. Barradas, Joel Borges y Filipe Vaz. "Optimization of Au:CuO Thin Films by Plasma Surface Modification for High-Resolution LSPR Gas Sensing at Room Temperature". Sensors 22, n.º 18 (17 de septiembre de 2022): 7043. http://dx.doi.org/10.3390/s22187043.
Texto completoLi, Guoru, Ragini Singh, Jiajun Guo, Bingyuan Zhang y Santosh Kumar. "Nb2CTx MXene-assisted double S-tapered fiber-based LSPR sensor with improved features for tyramine detection". Applied Physics Letters 122, n.º 8 (20 de febrero de 2023): 083701. http://dx.doi.org/10.1063/5.0143776.
Texto completoQian, Siyu, Xinlong Chen, Shiyu Jiang, Qiwen Pan, Yachen Gao, Lei Wang, Wei Peng, Shanjun Liang, Jie Zhu y Shengchun Liu. "Direct detection of charge and discharge process in supercapacitor by fiber-optic LSPR sensors". Nanophotonics 9, n.º 5 (22 de febrero de 2020): 1071–79. http://dx.doi.org/10.1515/nanoph-2019-0504.
Texto completoTesis sobre el tema "LSPR sensors"
Stone, Edmund K. "Semiconductor surface plasmons : a route to terahertz waveguides and sensors". Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3582.
Texto completoWatkins, William L. "Study and development of localised surface plasmon resonance based sensors using anisotropic spectroscopy". Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS505.pdf.
Texto completoLocalised surface plasmon resonance (LSPR) is defined as the collective oscillation of the conduction electron cloud induced by an external electric field. In the case of nanoparticles composed of noble metals such as gold, silver, or copper, the resonance is located in the visible or near UV range. The polarisability of a nanoparticle is directly proportional to four key parameters: its volume, its composition, its shape and its surrounding environment. It is these properties that make LSPR useful for sensor applications. In the case of isotropic particles, such as spheres, the LSPR spectrum shows only one absorption peak. In the case of an anisotropic particle, such as an ellipsoid, the absorption spectrum has two or more distinct peaks. If the absorption cross-section is measured with unpolarised light, multiple maxima are obtained. The key point for these type of systems is the possibility to decouple the resonances using polarised light. In this description the anisotropic system is considered microscopic, i.e. it is only made of one or two particles. In the case of a macroscopic sample, such as a colloidal solution of ellipsoids or nanorods, the absorption spectrum will always have multiple absorption maxima, and they cannot be decoupled because the sample is not globally anisotropic.On the other hand, if the sample has a global anisotropy such as aligned nanorods, or nanosphere organised in lines, it is possible to have a plasmon spectrum dependent on the light polarisation. Being able to decouple the resonances of an anisotropic sample makes it possible to measure a differential spectrum by taking the difference of the two absorption spectra. This is experimentally possible by using anisotropic transmission spectroscopy which measures the optical anisotropy. The advantage is to obtain a relative and differential spectrum more stable and reproducible. Moreover, it is now possible to follow the evolution of the optical response of the plasmonic particles no longer by measuring a spectral shift but by measuring the change in intensity of the signal at a fixed wavelength. This method is used on two case studies which are the measurement of the interaction of dihydrogen with gold nanoparticles, as well as the detection of low partial pressure of dihydrogen in a carrier gas (argon, and air) using palladium nanoparticles, for hydrogen sensing applications
Kaya, Zeynep. "Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors". Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2220.
Texto completoMolecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol
Schenström, Karl. "Biofunctionalization of a Fiber Optics-Based LSPR Sensor". Thesis, Linköpings universitet, Molekylär fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125726.
Texto completoANDRADE, Arnaldo César Dantas dos Santos. "Desenvolvimento de Dispositivo Eletrônico e Sensor Plasmônico para Detecção de Glicose". Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/12213.
Texto completoMade available in DSpace on 2015-03-12T17:33:14Z (GMT). No. of bitstreams: 2 DISSERTAÇÃO Arnaldo César Dantas dos Santos Andrade.pdf: 7831380 bytes, checksum: 66d5438c268c796c6cdb3d1cd4e40f5a (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013
Um dispositivo eletrônico para teste laboratorial remoto ou point-of-care testing (POCT) foi desenvolvido para detecção de glicose, sendo três as suas unidades estruturais: a fonte de luz, o sensor plasmônico e o transdutor de sinal. Após testes na primeira unidade estrutural do instrumento, optou-se por fonte de luz do tipo laser de ondas contínuas, trabalhando no comprimento de onda 780 nm. A segunda unidade estrutural é resultante de técnicas de engenharia molecular e síntese coloidal de um sensor plasmônico, estável, consumível em única dose. Funcionalizou-se a superfície dos nanobastões de ouro (NBAu), revestindo-os com polieletrólitos e em seguida conjugou-se com enzima glicose oxidase (GO) em camadas, pelo método layer-by-layer (LBL). As camadas foram caracterizadas por espectroscopia UVVis- NIR e obteve-se uma relação qualitativa entre estas e seus respectivos espectros de ressonância localizada de plasmon de superfície (LSPR). A LSPR possibilita uma ampla variedade de aplicações em dispositivos sensores baseados neste fenômeno. Os NBAu sintetizados neste trabalho apresentaram dois modos de absorção: (i) 550 nm o qual corresponde ao modo de oscilação transversal e (ii) 744 nm para o modo de oscilação longitudinal e sua morfologia foi obtida por microscopia eletrônica de transmissão (MET). Foi possível investigar a estabilidade de nanobastões funcionalizados com concentrações de poliestirenosulfonato de sódio (PSS). O sensor plasmônico NBAu-PSS-Poliacrilamida(PAM)- GO distinguiu absorções para soluções de concentrações distintas de glicose. Para a terceira unidade estrutural do instrumento foram selecionados transdutores de sinal e desenvolveu-se uma abordagem experimental que permitiu defini-los e programá-los a fim de reproduzir respostas correspondentes àquelas de analisadores convencionais. Um analisador de modulações LSPR foi programado no dispositivo eletrônico e ocorreu em conjunto com a síntese das nanoestruturas. A especificação do emissor de luz, a construção do sensor NBAu- PSS-PAM-GO e a definição do transdutor de sinal, permitiram elaborar uma instrumentação prática para a diagnóstico rápido. Este trabalho veio reforçar a importância da aplicação de nanoestruturas anisotrópicas para reconhecimento de macromoléculas. Uma estratégia semelhante foi contemplada neste mesmo dispositivo eletrônico, demonstrada em anticorpos conjugados aos nanobastões para reconhecimento da proteína troponina, como prova de conceito.
Tu, Minh Hieu. "Investigation of metal nanomaterials as a sensing element in LSPR-based optical fibre sensor development". Thesis, City University London, 2014. http://openaccess.city.ac.uk/5919/.
Texto completoHan, Cheng-Yu. "Clock Synchronization and Localization for Wireless Sensor Network". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS453/document.
Texto completoWireless sensor networks (WSNs) play an important role in applications such as environmental monitoring, source tracking, and health care,... In WSN, sensors have the ability to perform data sampling, distributed computing and information fusion. To perform such complex tasks, clock synchronization and localization are two fundamental and essential algorithms. WSNs have been widely studied in the past years, and the scientific literature reports many outcomes that make them applicable for some applications. For some others, research still needs to find solutions to some of the challenges posed by battery limitation, dynamicity, and low computing clock rate. With the aim of contributing to the research on WSN, this thesis proposes new algorithms for both clock synchronization and localization. For clock synchronization, sensors converge their local physical clock to perform data fusion. By applying the clock synchronization algorithm, sensors converge the time difference and therefore work at the same rate. In view of dynamicity, low computing and sparsity of WSN, a new pulse-coupled decentralized synchronization algorithm is proposed to improve the precision of the synchronization. The benefit of this kind of algorithm is that sensors only exchange zero-bit pulse instead of packets, so not only the communication is efficient but also robust to any failure of the sensors in the network. Localization of sensors has been widely studied. However, the quality and the accuracy of the localization still have a large room to improve. This thesis apply Leave-out Sign-dominant Correlated Regions (LSCR) algorithm to localization problem. With LSCR, one evaluates the accurate estimates of confidence regions with prescribed confidence levels, which provide not only the location but also the confidence of the estimation. In this thesis, several localization approaches are implemented and compared. The simulation result shows under mild assumptions, LSCR obtains competitive results compared to other methods
Berlangieri, Chiara. "Nanostructured gels and sensors for preventive and sustainable conservation of works of art". Doctoral thesis, 2018. http://hdl.handle.net/2158/1130733.
Texto completo李宗諺. "Optical tapered filber sensor based on localized surface plasmon resonance (LSR)". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/88680320717973303119.
Texto completoCapítulos de libros sobre el tema "LSPR sensors"
Otte, Marinus A. y Borja Sepulveda. "Figures of Merit for Refractometric LSPR Biosensing". En Nanoplasmonic Sensors, 317–31. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3933-2_13.
Texto completoBingham, Julia M., W. Paige Hall y Richard P. Van Duyne. "Exploring the Unique Characteristics of LSPR Biosensing". En Nanoplasmonic Sensors, 29–58. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3933-2_2.
Texto completoVestergaard, Mun’delanji C., Masato Saito, Hiroyuki Yoshikawa y Eiichi Tamiya. "Gold Nanostructure LSPR-Based Biosensors for Biomedical Diagnosis". En Springer Series on Chemical Sensors and Biosensors, 171–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/5346_2012_50.
Texto completoVaskevich, Alexander y Israel Rubinstein. "Localized Surface Plasmon Resonance (LSPR) Transducers Based on Random Evaporated Gold Island Films: Properties and Sensing Applications". En Nanoplasmonic Sensors, 333–68. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3933-2_14.
Texto completoWilks, Yorick. "Senses and texts". En Terminology, LSP and Translation, 205. Amsterdam: John Benjamins Publishing Company, 1996. http://dx.doi.org/10.1075/btl.18.20wil.
Texto completoKumar, Santosh, Niteshkumar Agrawal, Chinmoy Saha y Rajan Jha. "Graphene Oxide Coated Gold Nanoparticles-Based Fiber-Optic LSPR Sensor". En Optical Fiber-based Plasmonic Biosensors, 131–65. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003243199-6.
Texto completoKumar, Santosh, Niteshkumar Agrawal, Chinmoy Saha y Rajan Jha. "Fiber-Optic LSPR Sensor Using Graphene Oxide Coated Silver Nanostructures". En Optical Fiber-based Plasmonic Biosensors, 167–95. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003243199-7.
Texto completoSaison, Ophélie, Gaëtan Lévêque y Abdellatif Akjouj. "LSPR in Plasmonic Nanostructures: Theoretical Study with Application to Sensor Design". En Encyclopedia of Nanotechnology, 1–8. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100985-1.
Texto completoSaison, Ophélie, Gaëtan Lévêque y Abdellatif Akjouj. "LSPR in Plasmonic Nanostructures: Theoretical Study with Application to Sensor Design". En Encyclopedia of Nanotechnology, 1819–26. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100985.
Texto completoJeong, Wang-Boo, Dong-Won Park y Young-Ho Sohn. "Optimization of LSPL Algorithm for Data Transfer in Sensor Networks Based on LEACH". En Advances in Computer Science and Ubiquitous Computing, 789–96. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0281-6_111.
Texto completoActas de conferencias sobre el tema "LSPR sensors"
Larsen, Steven y Yiping Zhao. "Improving the performance of LSPR sensors by composite plasmonic nanostructures". En Optical Sensors. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/sensors.2019.sw5d.3.
Texto completoGouvêa, Paula M. P., Isabel C. S. Carvalho, Hoon Jang, Marco Cremona, Arthur M. B. Braga y Michael Fokine. "Characterization of a Fiber Optic Sensor Based on LSPR and Specular Reflection". En Optical Sensors. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/sensors.2010.stua4.
Texto completoSae-Wan Kim, Seung-Hwan Cha, Byoung-Ho Kang, Sang-Won Lee, Jae-Sung Lee, Ju-Seong Kim, Gopalan Sai-Anand y Shon-Won Kang. "Optical gas sensor based on LSPR using ZnO nanoparticles and AAO nanostructure". En 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370399.
Texto completoAl-Rubaye, Ali, Alexei Nabok, Hisham Abu-Ali, Andras Szekacs y Ester Takacs. "LSPR/TIRE bio-sensing platform for detection of low molecular weight toxins". En 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234116.
Texto completoKusuda, Yasuhiro, Zhongyuan Yang, Takaaki Soeda, Fumihiro Sassa y Kenshi Hayashi. "Invisible Odor Trace Tracking with LSPR based High Speed Gas Sensor Robot System". En 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956599.
Texto completoGouvêa, Paula M. P., Dario P. Parra, Arthur M. B. Braga y Isabel C. S. Carvalho. "Chemical sensing with an all-fiber reflection LSPR sensor". En 21st International Conference on Optical Fibre Sensors (OFS21). SPIE, 2011. http://dx.doi.org/10.1117/12.886006.
Texto completoSemasa, Kohei, Fumihiro Sassa y Kenshi Hayashi. "2D LSPR gas sensor with Au/Ag core-shell structure coated by fluorescent dyes". En 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278828.
Texto completoSoeda, Takaaki, Zhongyuan Yang, Fumihiro Sassa, Yoichi Tomiura y Kenshi Hayashi. "2D LSPR multi gas sensor array with 4-segmented subpixel using Au/Ag core shell structure". En 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956635.
Texto completoSawada, Arata, Fumihiro Sassa y Kenshi Hayashi. "Estimation of Distributed Concentration of Mixed Gases Using Au/Ag Core-Shell 2D LSPR Gas Sensor". En 2021 IEEE Sensors. IEEE, 2021. http://dx.doi.org/10.1109/sensors47087.2021.9639593.
Texto completoZhou, Cheng y Jian-quan Yao. "Photonic crystal fiber-based silver-nanowires LSPR sensors with supermodes". En OFS2012 22nd International Conference on Optical Fiber Sensor, editado por Yanbiao Liao, Wei Jin, David D. Sampson, Ryozo Yamauchi, Youngjoo Chung, Kentaro Nakamura y Yunjiang Rao. SPIE, 2012. http://dx.doi.org/10.1117/12.974901.
Texto completo